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ABSTRACT

We address the problem of estimating intrinsic
distances in a manifold from a finite sample. We
prove that the metric space defined by the sam-
ple endowed with a computable metric known
as sample Fermat distance converges a.s. in the
sense of Gromov–Hausdorff. The limiting object is
the manifold itself endowed with the population

Fermat distance, an intrinsic metric that accounts
for both the geometry of the manifold and the
density that produces the sample. We show that
this approach outperforms more standard meth-
ods based on Euclidean norm, with theoretical re-
sults and computational experiments.
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DIMENSIONALITY REDUCTION
We couple the estimation of Fermat distance on input data with the Multidimensional Scaling method
to achieve dimensionality reduction.

Isomap suffers from topological instability in presence of noise.

Fermat distance treats noisy points almost as not being part of the
manifold, so they do not affect the inference of the right geometry.

REFERENCES

[1] E. Borghini, X. Fernández, P. Groisman, and
G. Mindlin. Intrinsic persistent homology via
density-based metric learning. arXiv preprint
arXiv:2012.07621, 2020.

CONTACT INFORMATION

Web ximenafernandez.github.io/
Email x.l.fernandez@swansea.ac.uk

PERSISTENT HOMOLOGY

Persistent homology pipeline. From a point cloud
with a metric construct a filtration of simplicial
complexes parametrized by real numbers repre-
senting the radius of a covering of balls. Then,
compute the persistent generators of homology
groups and summarize the information in a per-
sistence diagram. Each point in the diagram repre-
sents the birth and the lifetime of a generator in
homology. H0 represents connected components
(clusters) and H1, one dimensional cycles.

The choice of the distance. Persistence diagrams
strongly depend on the notion of distance defined
in the input data. When data belongs to a mani-
fold, the choice of (robust estimators of) intrinsic
distances reflects more faithfully the topology of
the manifold.

FERMAT DISTANCE

Let M be a smooth d-dimensional Riemannian
manifold embedded in RD with density f :M→
R>0. Let Xn = {x1, x2, . . . , xn} ⊆ M be a sample
of n independent sample points inM with com-
mon density f .

Let x, y ∈M and p > 1.

• The population Fermat distance is defined
as

df,p(x, y) = inf
γ

∫
I

1

f(γt)(p−1)/d
|γ̇t|dt.

where | · | denotes the Euclidean distance and
the infimum is taken over all piecewise smooth
curves γ : I = [0, 1]→M, γ(0) = x, γ(1) = y.

• The sample Fermat distance is defined as

dXn,p(x, y) = inf
γ

r∑
i=0

|xi+1 − xi|p

where the infimum is taken over all paths γ =
(x0, x1, . . . , xr+1) with x0 = x, xr+1 = y and
{x1, x2, . . . , xr} ⊆ Xn.

DISTANCE LEARNING

Theorem. There exists a constant C = C(n, p, d)
such that for every λ ∈

(
(p − 1)/pd, 1/d

)
and ε > 0

there exist θ > 0 satisfying

P
(
dGH

((
M, df,p

)
,
(
Xn, CdXn,p

))
> ε
)
−−−−→
n→∞

0

THE CHOICE OF p
MDS projection of a point cloud endowed with
sample Fermat distance for different choices of p.
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