INTRINSIC PERSISTENT HOMOLOGY

VIA DENSITY-BASED METRIC LEARNING

XIMENA FERNÁNDEZ^{*} joint work with E. Borghini, P. Groisman and G. Mindlin 38TH WORKSHOP IN GEOMETRIC TOPOLOGY 16th June 2021

*EPSRC Centre for Topological Data Analysis

The problem

 (\mathcal{M}, g) a *d*-dimensional Riemannian manifold embedded in \mathbb{R}^{D} .

Homology inference

 (\mathcal{M}, g) a *d*-dimensional Riemannian manifold embedded in \mathbb{R}^{D} .

$$\mathbb{X}_n = \{x_1, x_2, \dots, x_n\}$$
 a finite sample of \mathcal{M}

Homology inference

 (\mathcal{M}, g) a *d*-dimensional Riemannian manifold embedded in \mathbb{R}^{D} .

Q: How to infer the homology of \mathcal{M} from the sample \mathbb{X}_n ?

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\}$ a finite sample of \mathcal{M} .

Homology inference

 (\mathcal{M}, g) a *d*-dimensional Riemannian manifold embedded in \mathbb{R}^{D} .

Q: How to infer the homology of \mathcal{M} from the sample \mathbb{X}_n ?

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\}$ a finite sample of \mathcal{M} .

A: Compute persistent homology of \mathbb{X}_n .

Ambient persistent homology

Ambient persistent homology

• $\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{E}) \simeq \mathcal{M} \text{ for } \epsilon < \operatorname{2rch}(\mathcal{M})$

Intrinsic persistent homology

Intrinsic persistent homology

• $\operatorname{Rips}_{\epsilon}(\mathcal{M}, d_{\mathcal{M}}) \simeq \mathcal{M} \text{ for } \epsilon < \operatorname{conv}(\mathcal{M})$

The problem of noise

The problem of noise

The problem of noise

Density-based manifold learning

The manifold (and density) assumption

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\}$ a finite set of points in \mathbb{R}^D .

We assume that:

* \mathbb{X}_n lies in a *d*-dimensional Riemannian manifold \mathcal{M} embedded in \mathbb{R}^D , ** \mathbb{X}_n is drawn according to a smooth density $f : \mathcal{M} \to \mathbb{R}_{>0}$.

The manifold (and density) assumption

 $\mathbb{X}_n = \{x_1, x_2, \dots, x_n\}$ a finite set of points in \mathbb{R}^D .

We assume that:

* \mathbb{X}_n lies in a *d*-dimensional Riemannian manifold \mathcal{M} embedded in \mathbb{R}^D , ** \mathbb{X}_n is drawn according to a smooth density $f : \mathcal{M} \to \mathbb{R}_{>0}$.

Idea:

- Consider a Riemannian metric that depends on f.
- Find an estimator of the (density-based) Riemannian metric from the sample.

• Let (\mathcal{M}, g) be a Riemannian manifold and let $f : \mathcal{M} \to \mathbb{R}_{>0}$ be a smooth density.

- Let (\mathcal{M}, g) be a Riemannian manifold and let $f : \mathcal{M} \to \mathbb{R}_{>0}$ be a smooth density.
- For q > 0, and consider the deformed metric tensor $g_q = f^{-2q}g$.

- Let (\mathcal{M}, g) be a Riemannian manifold and let $f : \mathcal{M} \to \mathbb{R}_{>0}$ be a smooth density.
- For q > 0, and consider the deformed metric tensor $g_q = f^{-2q}g$.
- \bullet The induced deformed Riemannian distance in ${\cal M}$ is

$$d_{f,q}(x,y) = \inf_{\gamma} \int_{I} \frac{1}{f(\gamma_t)^q} \sqrt{g(\dot{\gamma}_t, \dot{\gamma}_t)} dt$$

over all
$$\gamma: I \to \mathcal{M}$$
 with $\gamma(0) = x$ and $\gamma(1) = y$.

- Let (\mathcal{M}, g) be a Riemannian manifold and let $f : \mathcal{M} \to \mathbb{R}_{>0}$ be a smooth density.
- For q > 0, and consider the deformed metric tensor $g_q = f^{-2q}g$.
- The induced deformed Riemannian distance in ${\mathcal M}$ is

$$d_{f,q}(x,y) = \inf_{\gamma} \int_{I} \frac{1}{f(\gamma_t)^q} \sqrt{g(\dot{\gamma}_t, \dot{\gamma}_t)} dt$$

over all
$$\gamma: I \to \mathcal{M}$$
 with $\gamma(0) = x$ and $\gamma(1) = y$.

Fermat distance

• Let $\mathbb{X}_n \subseteq \mathbb{R}^D$ a sample of points.

Fermat distance

- Let $\mathbb{X}_n \subseteq \mathbb{R}^D$ a sample of points.
- For p > 1, the (sample) Fermat distance between $x, y \in \mathbb{R}^D$ is defined by

$$d_{\mathbb{X}_n,p}(x,y) = \inf_{\gamma} \sum_{i=0}^r |x_{i+1} - x_i|^p$$

over all paths $\gamma = (x_0, \ldots, x_{r+1})$ of finite length with $x_0 = x$, $x_{r+1} = y$ and $\{x_1, x_2, \ldots, x_r\} \subseteq X_n$.

Example (Fermat distance)

Manifold

Example (Fermat distance)

Example (Fermat distance)

Convergence of metric spaces

For p > 1 and q = (p-1)/d,

- Population metric space: $(\mathcal{M}, d_{f,q})$;
- Sample metric space: $(X_n, d_{X_n, p})$.

Convergence of metric spaces

For p > 1 and q = (p-1)/d,

- Population metric space: $(\mathcal{M}, d_{f,q})$;
- Sample metric space: $(X_n, d_{X_n, p})$.

Theorem (Borghini, F., Groisman, Mindlin, 2020)

There exist a constant C(n, p, d) > 0 such that for every $\lambda \in ((p-1)/pd, 1/d)$ and $\varepsilon > 0$ there exist $\theta > 0$ satisfying

$$\mathbb{P}\left(d_{GH}\left(\left(\mathcal{M}, d_{f,q}\right), \left(\mathbb{X}_{n}, C(n, p, d)d_{\mathbb{X}_{n}, p}\right)\right) > \varepsilon\right) \leqslant \exp\left(-\theta n^{(1-\lambda d)/(d+2p)}\right)$$

for *n* large enough.

For p > 1 and q = (p-1)/d,

- Population persistence diagram: $dgm(Filt(\mathcal{M}, d_{f,q}));$
- Sample persistence diagram: $\operatorname{dgm}(\operatorname{Filt}(\mathbb{X}_n, d_{\mathbb{X}_n, p}))$.

Corollary (Borghini, F., Groisman, Mindlin, 2020)

There exist a constant C(n, p, d) such that for every $\lambda \in ((p-1)/pd, 1/d)$ and $\varepsilon > 0$ there exist $\theta > 0$ satisfying

$$\mathbb{P}\Big(d_b\big(\mathrm{dgm}(\mathrm{Filt}(\mathcal{M}, d_{f,q})), \mathrm{dgm}(\mathrm{Filt}(\mathbb{X}_n, C(n, p, d)d_{\mathbb{X}_n, p}))\big) > \varepsilon\Big)$$
$$\leqslant \exp\big(-\theta n^{(1-\lambda d)/(d+2p)}\big)$$

for *n* large enough.

Example

-2

-3

Euclidean distance (without outliers)

___**.**.....

1.75

17

17

Robustness to outliers (Fermat distance)

Birth

Robustness to outliers (Fermat distance)

Proposition (Borghini, F., Groisman, Mindlin, 2021)

Let \mathbb{X}_n be sample of \mathcal{M} and let $Y \subseteq \mathbb{R}^D \setminus \mathcal{M}$ be a finite set of **outliers**.

There exists $\delta > 0$ such that for all k > 0 and p > 1,

 $\mathrm{dgm}_{k}(\mathrm{Rips}_{<\delta^{p}}(\mathbb{X}_{n}\cup Y, d_{\mathbb{X}_{n}\cup Y, p})) = \mathrm{dgm}_{k}(\mathrm{Rips}_{<\delta^{p}}(\mathbb{X}_{n}, d_{\mathbb{X}_{n}, p})).$

Here, for *p* large enough $\delta^p > \operatorname{diam}(\mathbb{X}_n, d_{\mathbb{X}_n, p})$.

Applications to signal analysis

Delay embedding

• Signal $X : [t_0, t_1] \rightarrow \mathbb{R}$

Delay embedding

• Signal $X : [t_0, t_1] \rightarrow \mathbb{R}$

• Delay embedding

 $\mathcal{M} = \{ (X(t), X(t+T), X(t+2T) \dots, X(t+(D-1)T)) : t \in [t_0, t_1 - (D-1)T] \}$

Delay embedding

• Signal $X : [t_0, t_1] \rightarrow \mathbb{R}$

• Delay embedding

 $\mathcal{M} = \{ (X(t), X(t+T), X(t+2T) \dots, X(t+(D-1)T)) : t \in [t_0, t_1 - (D-1)T] \}$

Delay Embedding T = 15

Persistence diagrams with Fermat distance for p = 2.

Delay Embedding T = 15

Persistence diagrams with Fermat distance for p = 2.

Delay Embedding T = 15

Persistence diagrams with Fermat distance for p = 2.

A canary song is composed by a concatenation of different syllabus patterns in the pressure in their air sacs.

- Preprint: E. Borghini, X. F., P. Groisman, G. Mindlin. Intrinsic persistent homology via density-based metric learning. arXiv:2012.07621 (2020) [Updated version soon]
- Code: https://github.com/ximenafernandez/intrinsicPH
- Python library: fermat.

email: x.l.fernandez@swansea.ac.uk

THANKS FOR YOUR ATTENTION!