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The problem



Homology inference

pM, gq a d-dimensional Riemannian manifold
embedded in RD .

Q: How to infer the homology of M from the
sample Xn?

Xn “ tx1, x2, . . . , xnu a finite sample of M.

A: Compute persistent homology of Xn.
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Ambient persistent homology
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Ambient persistent homology

‚ RipsεpM, dE q »M for ε ă 2rchpMq
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Intrinsic persistent homology
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Intrinsic persistent homology

‚ RipsεpM, dMq »M for ε ă convpMq
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The problem of noise
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The problem of noise
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The problem of noise
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Density-based manifold learning



The manifold (and density) assumption

Xn “ tx1, x2, . . . , xnu a finite set of points in RD .

We assume that:

˚ Xn lies in a d-dimensional Riemannian manifold M embedded in RD ,
˚˚ Xn is drawn according to a smooth density f : MÑ Rą0.

Idea:

– Consider a Riemannian metric that depends on f .
– Find an estimator of the (density-based) Riemannian metric from the sample.

9



The manifold (and density) assumption

Xn “ tx1, x2, . . . , xnu a finite set of points in RD .

We assume that:

˚ Xn lies in a d-dimensional Riemannian manifold M embedded in RD ,
˚˚ Xn is drawn according to a smooth density f : MÑ Rą0.

Idea:

– Consider a Riemannian metric that depends on f .
– Find an estimator of the (density-based) Riemannian metric from the sample.

9



Deformed Riemannian metric

• Let pM, gq be a Riemannian manifold and let f : MÑ Rą0 be a smooth density.

• For q ą 0, and consider the deformed metric tensor gq “ f ´2qg .

• The induced deformed Riemannian distance in M is

df ,qpx , yq “ inf
γ

ż

I

1
f pγtqq

a

gp 9γt , 9γtqdt

over all γ : I ÑM with γp0q “ x and γp1q “ y .
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Fermat distance

• Let Xn Ď RD a sample of points.

• For p ą 1, the (sample) Fermat distance between x , y P RD is defined by

dXn,ppx , yq “ inf
γ

r
ÿ

i“0

|xi`1 ´ xi |
p

over all paths γ “ px0, . . . , xr`1q of finite length with x0 “ x , xr`1 “ y and
tx1, x2, . . . , xru Ď Xn.
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Example (Fermat distance)

Manifold

Sample

12



Example (Fermat distance)

Manifold Sample

12



Example (Fermat distance)
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Convergence of metric spaces

For p ą 1 and q “ pp ´ 1q{d ,

• Population metric space: pM, df ,qq;

• Sample metric space:
`

Xn, dXn,p

˘

.

Theorem (Borghini, F., Groisman, Mindlin, 2020)

There exist a constant C pn, p, dq ą 0 such that for every λ P
`

pp ´ 1q{pd , 1{d
˘

and ε ą 0
there exist θ ą 0 satisfying

P
`

dGH
``

M, df ,q
˘

,
`

Xn,C pn, p, dqdXn,p

˘˘

ą ε
˘

ď exp
´

´θnp1´λdq{pd`2pq
¯

for n large enough.
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Convergence of persistence diagrams

For p ą 1 and q “ pp ´ 1q{d ,

• Population persistence diagram: dgmpFiltpM, df ,qqq;

• Sample persistence diagram: dgmpFiltpXn, dXn,pqq.

Corollary (Borghini, F., Groisman, Mindlin, 2020)

There exist a constant C pn, p, dq such that for every λ P
`

pp ´ 1q{pd , 1{d
˘

and ε ą 0 there
exist θ ą 0 satisfying

P
´

db
`

dgmpFiltpM, df ,qqq,dgmpFiltpXn,Cpn, p, dqdXn,pqq
˘

ą ε
¯

ď exp
`

´ θnp1´λdq{pd`2pq˘

for n large enough.
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Example
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Robustness to outliers
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Robustness to outliers
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Robustness to outliers
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Robustness to outliers (Fermat distance)
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Robustness to outliers (Fermat distance)
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Robustness to outliers

Proposition (Borghini, F., Groisman, Mindlin, 2021)

Let Xn be sample of M and let Y Ď RD rM be a finite set of outliers.

There exists δ ą 0 such that for all k ą 0 and p ą 1,

dgmkpRipsăδp pXn Y Y , dXnYY ,pqq “ dgmkpRipsăδp pXn, dXn,pqq.

Here, for p large enough δp ą diampXn, dXn,pq.
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Applications to signal analysis



Delay embedding

• Signal X : rt0, t1s Ñ R

• Delay embedding

M “ t
`

X ptq,X pt ` T q,X pt ` 2T q . . . ,X pt ` pD ´ 1qT q
˘

: t P rt0, t1 ´ pD ´ 1qT su
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Time series: Anomaly detection

Persistence diagrams with Fermat distance for p “ 2.
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Time series: Anomaly detection
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Time series: Pattern recognition
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Time series: Pattern recognition
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Time series: Pattern recognition

A canary song is composed by a concatenation of different syllabus patterns in the pressure in
their air sacs.
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Thanks for your attention!
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