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Motivation



Data Analysis

Embedding of a ECG signal. Embed. air sac pressure record of a canary during singing.

Trefoil knot with noise and outliers.
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Geometric Inference



Geometric Inference

• Geometric inference deals with the problem of inferring information
about a geometric object from a finite sample.

• Two unknown parameters are implicit in the sample:
• the probability distribution,
• the underlying geometry.

• The aim is to find estimators of:
• the density of the distribution,
• the dimension (of the manifold),
• the distance (of the metric space),
• the geometry itself,
• the homology.
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Distance learning

pM, gq a Riemannian manifold embedded in RD with inherited geodesic
distance dM.

• Good news: Locally, geodesic distance can be approximated by
Euclidean distance.

• Bad news (curse of dimensionality): In high dimensional Euclidean
spaces, the points essentially become uniformly distant from each
other.

• M. Bernstein, V. D. Silva, J. C. Langford, and J. B. Tenenbaum.
Graph approximations to geodesics on embedded manifolds, 2000.
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Density-based distance learning

pM, gq a d-dimensional Riemannian manifold embedded in RD with
inherited geodesic distance dM and f : MÑ Rą0 a density function.

• For p ą 1 define a new (Riemannian) metric tensor gp :“ f 2p1´pq{dg .

• The induced deformed Riemannian distance in M is

df ,ppx , yq “ inf
γ

ż

I

1
f pγtqpp´1q{d || 9γt ||dt.

where the infimum is taken over all piecewise smooth curves
γ : I ÑM with γp0q “ x , and γp1q “ y .

df ,p is called p-Fermat distance by analogy the Fermat principle in
optics.
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Fermat Distance
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Density-based distance learning

Xn ĎM a set of n sample points with common density f .

We look for a computable estimator of df ,p from the sample.
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Sample Fermat distance

For p ą 1, the sample Fermat distance between x , y is defined by

dXn,ppx , yq “ inf
γ

r
ÿ

i“0

|xi`1 ´ xi |
p

where the infimum is taken over all paths γ “ px0, . . . , xr`1q of finite
length with x0 “ x , xr`1 “ y and tx1, x2, . . . , xru Ď Xn.
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Example

Eyeglasses curve. A sample of 2000 points with Gaussian noise.
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Previous work

Sample Fermat distance was independently introduced in:

• D. Mckenzie and S. Damelin. Power weighted shortest paths for
clustering euclidean data. Foundations of Data Science, 1(3):307,
2019.

• P. Groisman, M. Jonckheere, and F. Sapienza. Nonhomogeneous
euclidean first-passage percolation and distance learning.
arXiv:1810.09398, 2018.
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Previous work

Theorem (Groisman, Jonckheere, Sapienza (2018))

Let M be an isometric∗ C 1 d-dimensional manifold embedded in RD .

Then, there exists µ “ µpp, dq ą 0 such that for any x , y PM,

lim
nÑ`8

npp´1q{d
µ dXn,ppx , yq “ df ,ppx , yq almost surely.

∗M is an isometric d-dimensional C1 manifold embedded in RD if there exists
S Ď Rd an open connected set and ϕ : S̄ Ñ RD an isometric transformation such that
ϕpS̄q “M.
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Previous work

Theorem (Hwang, Damelin, Hero (2016))

Let M be a compact smooth d-dimensional manifold without boundary.
Given ε ą 0 and b ą 0, there exists θ “ θpεq ą 0 such that, for all
sufficiently large n,

P

¨

˝ sup
x,y :dMpx,yqěb

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

npp´1q{d

µ LXn,ppx , yq
†

df ,ppx , yq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

˛

‚ď expp´θn1{pd`2pqq

In particular, for every x , y PM,

lim
nÑ`8

npp´1q{d
µ LXn,ppx , yq “ µdf ,ppx , yq almost surely.

†LXn px , yq “ inf
γ

r
ÿ

i“0
dMpxi`1, xi q

p , where the infimum is taken over all paths

γ “ px0, . . . , xr`1q with x0 “ x , xr`1 “ y and tx1, . . . , xr u Ď Xn.
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Fermat distance learning

Theorem 1 (Borghini, F., Groisman, Mindlin, 2020)
Let M be a compact smooth d-dimensional manifold without
boundary. Then, for every p ą 1 and λ P

´

p´1
pd ,

1
d

¯

, given ε ą 0 there
exist θ ą 0 such that, for n large enough,

P
ˆ

sup
x,yPM

ˇ

ˇ npp´1q{d
µ dXn,ppx , yq ´ df ,ppx , yq

ˇ

ˇ ą ε

˙

ď exp
´

´θn
1´λd
d`2p

¯

.
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Manifold approximation

• Population metric space: pM, df ,pq.

• Sample metric space:
`

Xn, npp´1q{d
µ dXn,p

˘

.

The Gromov–Hausdorff distance between pX, ρXq, pY, ρYq is

dGH
`

pX, ρXq, pY, ρYq
˘

:“ inftdHph1pXq, h2pYqqu,

where the infimum is over all the isometric embeddings h1 : XÑW,
h2 : YÑW in a common metric space W and dH stands for the
Hausdorff distance.
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Manifold approximation

• Population metric space: pM, df ,pq.

• Sample metric space:
`

Xn, npp´1q{d
µ dXn,p

˘

.

Theorem 2 (Borghini, F., Groisman, Mindlin, 2020)
Let M be a compact smooth d-dimensional manifold without
boundary. Then, for every p ą 1 and λ P

´

p´1
pd ,

1
d

¯

, given ε ą 0 there
exist θ ą 0 such that, for n large enough,

P
`

dGH
``

M, df ,p
˘

,
`

Xn, npp´1q{d
µ dXn,p

˘˘

ą ε
˘

ď exp
´

´θnp1´λdq{pd`2pq
¯
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Topological Inference



Persistent Homology

Point cloud: pXn, ρnq
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Persistent Homology

Point cloud: pXn, ρnq

Estimator:
Ť

i Bpxi , εq
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Persistent Homology

Point cloud: pXn, ρnq

Estimator:
Ť

i Bpxi , εq FiltεpXn, ρnq
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Persistent Homology

Point cloud: pXn, ρnq dgmpFiltpXn, ρnqq

Estimator:
Ť

i Bpxi , εq FiltεpXn, ρnq
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Approximation of persistence diagrams

• Population persistence diagram: dgmpFiltpM, ρqq.

• Sample persistence diagram: dgmpFiltpXn, ρnqq.

The bottleneck distance between dgm1 and dgm2 is

dbpdgm1,dgm2q “ inf
M

max
px,yqPM

|x ´ y |8.
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Stability of persistence diagrams

Stability Theorem

Let X ,Y be precompact metric spaces. Then,

db
`

dgmpFiltpX qq, dgmpFiltpY qq
˘

‡ ď 2dGHpX ,Y q ď 2dHpX ,Y q

where the last inequality holds if X ,Y are embedded in the same metric
space.

‡Here Filt will denote either Rips or Čech filtration.
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Convergence of persistence diagrams

• Population persistence diagram: dgmpFiltpM, ρqq.

• Sample persistence diagram: dgmpFiltpXn, ρnqq.

Theorem (Chazal, Glisse, Labruere, Michel, 2015)

Let pX, ρq be a compact metric space. Let Xn be a sample of X from a
measure µ with support X that satisfies the pa, bq-condition§. Then for
every ε ą 0

P pdbpdgmpFiltpXqq, dgmpFiltpXnqqq ą εq ď min

"

2b

aεb
expp´naεbq, 1

*

.

• B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan,
and A. Singh. Confidence sets for persistence diagrams. Ann.
Statist., 42(6):2301–2339, 2014.

§For all r ą 0 and x P X, µpBpx , rqq ě minp1, arbq. 23



Convergence of persistence diagrams

• Population persistence diagram: dgmpFiltpM, ρqq.

• Sample persistence diagram: dgmpFiltpXn, ρnqq.

Theorem (Chazal, Glisse, Labruere, Michel, 2015)

Let pX, ρq be a compact metric space. Let Xn be a sample of X from a
measure µ with support X that satisfies the pa, bq-condition§. Then for
every ε ą 0

P pdbpdgmpFiltpXqq, dgmpFiltpXnqqq ą εq ď min

"

2b

aεb
expp´naεbq, 1

*

.

• B. T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan,
and A. Singh. Confidence sets for persistence diagrams. Ann.
Statist., 42(6):2301–2339, 2014.

§For all r ą 0 and x P X, µpBpx , rqq ě minp1, arbq. 23



Convergence of persistence diagrams

• Population persistence diagram: dgmpFiltpM, df ,pqq.

• Sample persistence diagram: dgmpFiltpXn, npp´1q{d
µ dXn,pqq.

Theorem 3 (Borghini, F., Groisman, Mindlin, 2020)

Given ε ą 0 and λ P
´

p´1
pd ,

1
d

¯

there exists a constant θ ą 0 such that

P
´

db
`

dgmpFiltpM, df ,pqq, dgmpFiltpXn, npp´1q{d
µ

dXn,pqq
˘

ą ε
¯

ď exp
`

´ θnp1´λdq{pd`2pq˘

for n large enough.
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Example
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Experiment with outliers & noise

A sample of 1500 points from the trefoil knot with noise and outliers.
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Applications



Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

¶

Persistence diagrams with Fermat distance for p “ 2.

¶Data from Physionet database, MIT Laboratory for Computational Physiology. 27
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Time series: Periodicity

Observation of the pressure in the air sacs of a canary during singing.

‖

Persistence diagram with Fermat distance p “ 2.

‖Data from experimental records, Laboratory of Dynamical Systems, Physics
Department, University of Buenos Aires. 28
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Time series: Periodicity

A canary song is composed by a concatenation of different syllabus
patterns in the pressure in their air sacs.

Work in progress: Fit parameters of physical models of the underlying
dynamical system using this correspondence between pressure patterns
and 1-dimensional cycles.
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Thanks!
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