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The problem



Metric learning in Riemannian manifolds

pM, gq a d-dimensional Riemannian
manifold with associated
Riemannian distance

dMpx , yq “ inf
γ

ż

I

a

gp 9γt , 9γtqdt,

over all γ : I ÑM with γp0q “ x ,
and γp1q “ y .

Xn “ tx1, x2, . . . , xnu a finite
sample of M.

How to infer the Riemannian
distance from the sample?
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Inherited Riemannian metric

If M is embedded in RD and
gpx , yq “ xx , yy is the inner
product in RD , the associated
Riemannian distance is

dMpx , yq “ inf
γ

ż

I

|| 9γt ||dt

over all piecewise smooth curves
γ : I ÑM with γp0q “ x , and
γp1q “ y .

Given ε ą 0, consider the
ε-graph GεpXnq and define the
estimator*

dXn,εpx , yq “ inf
γ

r
ÿ

i“0

|xi`1 ´ xi |

over all γ “ px , x1, . . . , , xr , yq

with pxi , xi`1q P E pGεq for all
1 ď i ď r .

*
* Bernstein, de Silva, Langford, Tenenbaum (2000).
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ISOMAP

Theorem (Bernstein, de Silva, Langford, Tenenbaum, 2000)

Let M be a closed d-dimensional Riemannian manifold embedded in RD

with inherited Riemannian distance dM. Let Xn be a finite sample of M.

Assume εn Ñ 0 and nεdn Ñ8. Then,

lim
nÑ8

sup
x,yPM

|dXn,εnpx , yq ´ dMpx , yq| “ 0

in probability, with almost sure convergence provided nεdn{ log nÑ8.
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Dependence on ε (and density)

Manifold Noisy sample

ε- graph

ε “ 0.2 ε “ 0.3 ε “ 0.4
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The manifold (and density) assumption

Xn “ tx1, x2, . . . , xnu a finite set
of points in RD .
We assume that:

• Xn lies in a d-dimensional
Riemannian manifold M,

• Xn is drawn according to a
density f .

Find an estimator of the
(density-based) Riemannian
metric from the sample.

pM, gq a d-dimensional
Riemannian manifold embedded
in RD with f : MÑ Rą0 a
smooth density function.

Consider a (new) Riemannian
metric that depends on f .
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Density-based metric learning



Deformed Riemannian metric

• Let pM, gq be a Riemannian manifold and let f : MÑ Rą0 be a
smooth density.

• For q ą 0, and consider the deformed metric tensor

gq “ f ´2qg .∗

• The induced deformed Riemannian distance in M is

df ,qpx , yq “ inf
γ

ż

I

1
f pγtqq

a

gp 9γt , 9γtqdt

over all γ : I ÑM with γp0q “ x and γp1q “ y .

∗Hwang, Damelin, Hero (2016), Groisman, Jonckheere, Sapienza (2018) 7
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Fermat distance

• Let Xn Ď RD a sample of points.

• For p ą 1, the (sample) Fermat distance† between x , y P RD is
defined by

dXn,ppx , yq “ inf
γ

r
ÿ

i“0

|xi`1 ´ xi |
p

over all paths γ “ px0, . . . , xr`1q of finite length with x0 “ x ,
xr`1 “ y and tx1, x2, . . . , xru Ď Xn.

†Groisman, Jonckheere, Sapienza (2018), Mckenzie and Damelin (2019). 8
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Manifold

Sample Isomap
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Previous work

Theorem (Groisman, Jonckheere, Sapienza (2018))

Let pM, gq be an isometric‡ C 1 d-dimensional Riemannian manifold
embedded in RD with inherited metric tensor. Let Xn ĎM be a set of n
independent sample points with common smooth density f : MÑ Rą0.

Given p ą 1, there exists µ “ µpp, dq ą 0 such that for any x , y PM,

lim
nÑ`8

nq

µ dXn,ppx , yq “ df ,qpx , yq almost surely

with q “ pp ´ 1q{d .

‡M is an isometric d-dimensional C1 manifold embedded in RD if there exists
S Ď Rd an open connected set and ϕ : S̄ Ñ RD such that ϕpS̄q “M and ϕ : S̄ ÑM
is a Riemannian isometry. 10
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Previous work

Theorem (Hwang, Damelin, Hero (2016))

Let pM, gq be a closed smooth d-dimensional manifold with associated
Riemannian distance dM. Let Xn ĎM be a set of n independent sample
points with common smooth density f : MÑ Rą0.

Given p ą 1 (and q “ pp ´ 1q{d), there exists µ “ µpp, dq ą 0 such that
for all ε ą 0 and b ą 0

P

˜

sup
x,y :dMpx,yqěb

ˇ

ˇ

ˇ

ˇ

ˇ

nq

µ
LXn,ppx , yq

§

df ,qpx , yq
´ 1

ˇ

ˇ

ˇ

ˇ

ˇ

ą ε

¸

ď expp´θn1{pd`2pq
q

for some θ “ θpεq ą 0 and sufficiently large n.

§LXn,ppx , yq “ inf
γ

r
ÿ

i“0
dMpxi`1, xi q

p over all paths γ “ px0, . . . , xr`1q with x0 “ x ,

xr`1 “ y and tx1, . . . , xr u Ď Xn.
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Density-based metric learning

Theorem 1 (Borghini, F., Groisman, Mindlin, 2020)
Let pM, gq be a closed smooth d-dimensional Riemannian manifold
embedded in RD with inherited metric tensor. Let Xn ĎM be a set of
n independent sample points with common smooth density
f : MÑ Rą0.

Given p ą 1 and q “ pp ´ 1q{d , there exists a constant µ “ µpp, dq

such that for every λ P
`

pp ´ 1q{pd , 1{d
˘

and ε ą 0 there exist θ ą 0
satisfying

P
ˆ

sup
x,yPM

ˇ

ˇ nq

µ dXn,ppx , yq ´ df ,qpx , yq
ˇ

ˇ ą ε

˙

ď exp
´

´θn
1´λd
d`2p

¯

for n large enough.
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‘Metric space’ learning

• Population metric space: pM, df ,qq.

• Sample metric space:
`

Xn, nq

µ dXn,p

˘

.

Theorem 2 (Borghini, F., Groisman, Mindlin, 2020)
Given p ą 1 and q “ pp ´ 1q{d , there exists a constant µ “ µpp, dq

such that for every λ P
`

pp ´ 1q{pd , 1{d
˘

and ε ą 0 there exist θ ą 0
satisfying

P
`

dGH
``

M, df ,q
˘

,
`

Xn, nq

µ dXn,p

˘˘

ą ε
˘

ď exp
´

´θnp1´λdq{pd`2pq
¯

for n large enough.

Proof. Thm 1 + some additional work.
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Intrinsic persistent homology



Convergence of persistence diagrams

• Population persistence diagram: dgmpFiltpM, df ,qqq.

• Sample persistence diagram: dgmpFiltpXn, nq

µ dXn,pqq.

Theorem 3 (Borghini, F., Groisman, Mindlin, 2020)
Given p ą 1 and q “ pp ´ 1q{d , there exists a constant µ “ µpp, dq

such that for every λ P
`

pp ´ 1q{pd , 1{d
˘

and ε ą 0 there exist θ ą 0
satisfying

P
´

db
`

dgmpFiltpM, df ,qqq,dgmpFiltpXn, nq

µ
dXn,pqq

˘

ą ε
¯

ď exp
`

´ θnp1´λdq{pd`2pq˘

for n large enough.

Proof. Thm 2 + Stability Thm.
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Example
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Applications



Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

¶

Persistence diagrams with Fermat distance for p “ 2.

¶Data from Physionet database, MIT Laboratory for Computational Physiology. 16
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Time series: Periodicity

Observation of the pressure in the air sacs of a canary during singing.

‖

Persistence diagram Fermat distance p “ 1.5.

‖Data from experimental records, Laboratory of Dynamical Systems, Physics
Department, University of Buenos Aires. 17
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Time series: Periodicity

A canary song is composed by a concatenation of different syllabus
patterns in the pressure in their air sacs.

Work in progress: Fit parameters of physical models of the underlying
dynamical system using this correspondence between pressure patterns
and 1-dimensional cycles.
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Thanks for your attention!
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