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The problem



Metric learning in Riemannian manifolds

(M, g) a d-dimensional Riemannian
manifold with associated
Riemannian distance

dulx,y) = inf [ VG Ao)de
I

over all v : | — M with v(0) = x,
and y(1) = y.




Metric learning in Riemannian manifolds

(M, g) a d-dimensional Riemannian Xy = {x1,%2, ..., Xn} a finite
manifold with associated sample of M.
Riemannian distance

dulx,y) = inf [ VG Ao)de
I

over all v : | — M with v(0) = x,
and y(1) = y.




Metric learning in Riemannian manifolds

(M, g) a d-dimensional Riemannian Xy = {x1,%2, ..., Xn} a finite
manifold with associated sample of M.
Riemannian distance

dm(x,y) = igfﬁ \/Wdt, How to infer the Riemannian

distance from the sample?
over all v : | — M with v(0) = x,

and y(1) = y.




Inherited Riemannian metric

If M is embedded in RP and

g(x,y) = {x,y) is the inner
product in RP, the associated

Riemannian distance is
dui(x.y) = if [ [Fillee
I

over all piecewise smooth curves
v I — M with v(0) = x, and
(1) =y.




Inherited Riemannian metric

If M is embedded in RP and

g(x,y) = {x,y) is the inner
product in RP, the associated

Riemannian distance is
dui(x.y) = if [ [Fillee
I

over all piecewise smooth curves
v I — M with v(0) = x, and
(1) =y.

Given £ > 0, consider the
e-graph G.(X,) and define the
estimator*

dx, < (x,¥) mfZ |xit1 — Xi|

over all v = (x,x1,...,,%,y)
with (x;, xi+1) € E(G,) for all
1<i<r.

| —

* Bernstein, de Silva, Langford, Tenenbaum (2000).




ISOMAP

Theorem (Bernstein, de Silva, Langford, Tenenbaum, 2000)

Let M be a closed d-dimensional Riemannian manifold embedded in RP
with inherited Riemannian distance dy,. Let X, be a finite sample of M.

Assume ¢, — 0 and ne¢ — oo. Then,

lim sup |dx,.c,(x,y) —dam(x,y) =0

n—=%0 x ye M

in probability, with almost sure convergence provided ne9/log n — co.



pendence on ¢ (and density)

Manifold Noisy sample

o ped®s AL T
2 X

. wow ®
ol J . e
8g o o Se
B:'Dv RN D)
.
% Jﬂ Ny <
€ 'y g e
. wc?ﬂgﬁg DL HP R



Dependence on ¢ (and density)

Manifold Noisy sample

50 7. Caice
N e hd ®
8° ° . k7
o 8 0 S o
) Ao e )
.
5 , ;ﬂ R -
‘e N
) | Tl




The manifold (and density) assumption

X, = {x1,x2,...,Xn} a finite set
of points in RP.
We assume that:

e X, lies in a d-dimensional

Riemannian manifold M,

e X, is drawn according to a
density f.
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Consider a (new) Riemannian
metric that depends on f.



The manifold (and density) assumption

X, = {x1,x2,...,x,} a finite set (M, g) a d-dimensional
of points in RP. Riemannian manifold embedded
We assume that: in RP with f: M —> R.g a

e X, lies in a d-dimensional smooth density function.

Riemannian manifold M,

e X, is drawn according to a
density f.

X, M
Find an estimator of the Consider a (new) Riemannian
(density-based) Riemannian metric that depends on f.

metric from the sample.



Density-based metric learning



Deformed Riemannian metric

e Let (M, g) be a Riemannian manifold and let f: M — R~ be a
smooth density.

*Hwang, Damelin, Hero (2016), Groisman, Jonckheere, Sapienza (2018)
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Deformed Riemannian metric

e Let (M, g) be a Riemannian manifold and let f: M — R~ be a
smooth density.

e For g > 0, and consider the deformed metric tensor
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Fermat distance

o Let X, < RP a sample of points.

tGroisman, Jonckheere, Sapienza (2018), Mckenzie and Damelin (2019). 8



Fermat distance

o Let X, < RP a sample of points.

e For p > 1, the (sample) Fermat distance! between x,y € R? is

defined by

dx, p(X,y) = |nf2|x,+1_xl‘p
over all paths v = (xo, ..., Xr+1) of flnlte length with xo = x,
Xrp1 =y and {x1,x2,...,%x} S X,.

tGroisman, Jonckheere, Sapienza (2018), Mckenzie and Damelin (2019).
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Fermatp =15
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Fermatp = 2.5




Previous work

Theorem (Groisman, Jonckheere, Sapienza (2018))

Let (M, g) be an isometrict C! d-dimensional Riemannian manifold
embedded in RP with inherited metric tensor. Let X,, € M be a set of n
independent sample points with common smooth density f : M — R-.

Given p > 1, there exists u = u(p, d) > 0 such that for any x,y € M,

nﬂr}:@ 2 dy, p(X,y) = dr q(x,y) almost surely

with g = (p—1)/d.

t M is an isometric d-dimensional C! manifold embedded in RP if there exists
S < RY an open connected set and ¢ : S — RP such that ¢(5) = M and ¢ : S — M
is a Riemannian isometry. 10
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Previous work

Theorem (Hwang, Damelin, Hero (2016))

Let (M, g) be a closed smooth d-dimensional manifold with associated
Riemannian distance dpq. Let X,, € M be a set of n independent sample
points with common smooth density f : M — R-q.

r
§Lxmp(x,y) = inf Z da(xit1, x;)P over all paths v = (xo, ..., x-+1) with xo = x,
7 iZo
Xr+1 =y and {x1,...,x} € X,.
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Previous work

Theorem (Hwang, Damelin, Hero (2016))

Let (M, g) be a closed smooth d-dimensional manifold with associated
Riemannian distance dpq. Let X,, € M be a set of n independent sample
points with common smooth density f : M — R-q.

Given p> 1 (and g = (p — 1)/d), there exists ;1 = p(p, d) > 0 such that
foralle >0and b >0

P sup
x,y:daq(x,y)=b

for some 6 = 6(e) > 0 and sufficiently large n.

%an,P(X7y)§

=1l
dfy‘?(Xu .y)

> E) < exp(—On/(7T2P)

r
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7 iZo
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Density-based metric learning

Let (M, g) be a closed smooth d-dimensional Riemannian manifold
embedded in R? with inherited metric tensor. Let X, € M be a set of
n independent sample points with common smooth density

f: M — Ry

Given p > 1 and g = (p — 1)/d, there exists a constant u = u(p, d)
such that for every A € ((p — 1)/pd, 1/d) and & > 0 there exist 6 > 0

satisfying

P ( sup
x,yeM

for n large enough.

2 dy, p(X,¥) — df.q(x,y)| > 6) < exp (_9,,2125)

12



‘Metric space’ learning

o Population metric space: (M, dr ).

o Sample metric space: (X,, “dy, ,).

13



‘Metric space’ learning

Population metric space: (M, df q).

Sample metric space: (X,, ©dx, ,).

Given p> 1 and g = (p — 1)/d, there exists a constant . = pu(p, d)
such that for every A € ((p — 1)/pd, 1/d) and & > 0 there exist 6 > 0
satisfying

P (det (M, dr.q), (X, 2, ) > &) < exp (—9n<1—*d>/<d+2p>)
for n large enough.

Proof. Thm 1 + some additional work.

13



Intrinsic persistent homology




Convergence of persistence diagrams

¢ Population persistence diagram: dgm(Filt(M, df q)).
» Sample persistence diagram: dgm(Filt(X,, 2 dx, ,)).

14



Convergence of persistence diagrams

Population persistence diagram: dgm(Filt(M, df 4)).
Sample persistence diagram: dgm(Filt(X,, 2 dx, ;)).

Given p> 1 and g = (p — 1)/d, there exists a constant . = pu(p, d)
such that for every A€ ((p—1)/pd,1/d) and & > 0 there exist § > 0
satisfying

P(db (dgm(Filt(M, dr q)), dgm(Filt(Xn, 2 ds, ,))) > s)

1t 77

< exp ( - an(l—)\d)/(d+2p))
for n large enough.

Proof. Thm 2 + Stability Thm.

14
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Applications




Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

ECG signal

: 0 - e |

9Data from Physionet database, MIT Laboratory for Computational Physiology. 16



Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

ECG signal

a0

20

Delay Embedding T =15

MIT Laboratory for Computational Physiology.

9Data from Physionet database,
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Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

ECG signal
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Persistence diagrams with Fermat distance for p = 2.
Delay Embedding T=15

Hy of period [0,4000]

9Data from Physionet database, MIT Laboratory for Computational Physiology.
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Time series: Anomaly detection

Electrocardiogram signal with abnormal heartbeat (arrhythmia).

ECG signal

3 1000 20 B a0

Persistence diagrams with Fermat distance for p = 2.
Delay Embedding T=15

H, of period [0,4000] Hy of period [0,5000]
g £
=
e 0.0

9Data from Physionet database, MIT Laboratory for Computational Physiology.
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Time series: Periodicity

Observation of the pressure in the air sacs of a canary during singing.

3 50000 100000 150000 00000 250000 300000 50000 ”

IData from experimental records, Laboratory of Dynamical Systems, Physics

Department, University of Buenos Aires. 17



Time series: Periodicity

Observation of the pressure in the air sacs of a canary during singing.
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Delay embedding T =500

IData from experimental records, Laboratory of Dynamical Systems, Physics

Department, University of Buenos Aires. 17



Time series: Periodicity

Observation of the pressure in the air sacs of a canary during singing.
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Time series: Periodicity

A canary song is composed by a concatenation of different syllabus
patterns in the pressure in their air sacs.

‘u fml\(w
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Time series: Periodicity

A canary song is composed by a concatenation of different syllabus
patterns in the pressure in their air sacs.

T N

Work in progress: Fit parameters of physical models of the underlying
dynamical system using this correspondence between pressure patterns
and 1-dimensional cycles.

18
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