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Abstract. [MBD: Re-visit in the end] We explore the application of topological data analysis4
for audio fingerprinting using persistent homology on spectral features of audio tracks. A fingerprint5
of an audio signal is a descriptive summary that encodes information to uniquely identify it. Audio6
fingerprinting enables commercial applications such as audio identification and cover song detection7
that underpins copyright protection in streaming platforms and other services. Using cubical com-8
plexes we extract topological features from audio files that are local, and can be used to quantify9
auditory similarity between different tracks. Using topological descriptors, we develop an audio-10
identification algorithm for pairwise comparisons of audio signals. We evaluate our method on a11
duplicate audio detection task, and find that topological audio ID achieves comparable performance12
to the leading method. Under certain obfuscations, our method achieves superior performance,13
which shows that methods based on topology can increase the robustness and reliability of audio14
identification systems.15
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1. Introduction. [MBD: It’s important that we replace all instances of ”songs”20

for ”track” or ”audio signal” because the method is general for signals with spectral21

representation, not just music]22

[MBD: We need to have an introductory paragraph about audio ID, and one23

about TDA and PH, providing key references. Then we can go onto the rest of the24

intro] [WR: ] In this work we introduce the use of topological data analysis (TDA)25

for audio identification (audio ID). Given a query audio track (e.g., a fragment of a26

song), the main task in audio ID is to identify matching tracks from a database. There27

are many variations of audio ID, most notably duplicate detection [1, 19, 32, 33], and28

cover identification [25, 28, 29]. [MBD: This needs a bit of an expansion]29

Many tasks in audio analysis rely on spectral representations (i.e., time-frequency)30

of the audio such as spectrograms[MBD: Ref here]. A spectrogram S, (defined in sec-31

tion 2) is a matrix whose columns are ‘local’ Fourier decompositions of the audio sig-32

nal, where an entry represents the intensity with which a specific frequency is present33

in a portion of the signal [12]. Spectrograms are often represented as heatmaps where34

the frequencies that appear in the audio at different times are visible. The patterns35

in the spectrogram correspond to auditory features that audio ID systems leverage to36

identify an audio query [1, 12, 32, 33]. Specifically, audio ID systems aim to extract37

‘fingerprints‘ from audio tracks, that can then be used for search and retrieval. Au-38

dio fingerprints are low-dimensional features, robust to obfuscations, and computed39

from spectrograms using image analysis techniques. For example, in Ref. [32], the40
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fingerprint of a track is a set of time-frequency triplets that correspond to salient41

points in the spectrogram. In Refs. [1, 33], time-windows (subsets of columns) from42

the spectrogram are decomposed using wavelets. The fingerprint of a window encodes43

the most-significant wavelet types from the decomposition.44

Fingerprinting a set of tracks generates a database of keys, which can then be45

queried. Industrial audio ID methods usually consist of two steps: 1–vs–N and 1–vs–46

1[1]. During the first step, a set of candidate, similar audio tracks is retrieved from47

the database. The second, sometimes with additional comparisons, consists of decid-48

ing whether each candidate matches the query sample. This is a binary classification49

task, where a point is a pair of tracks, with the ground truth denoting whether they50

are duplicates. As an example, in Shazam [32], the 1–vs–N step returns the candi-51

date which has the most ‘aligned’ fingerprints with the query snippet. The second52

step consists of estimating the significance of that matching. In Ref. [33], [MBD: Is53

this also Shazam or something else? maybe we can say a bit more about this imple-54

mentation] [WR: This is something else: Shazam is wang industrial-strength 2003]55

the first step has two parts: estimating a pool of candidates based on the number of56

matching fingerprints, and, producing an alignment score. The second step is a test57

of significance on the candidate with the best alignment score.58

Topological data analysis is a collection of data analysis techniques, inspired by59

topological descriptors, like homotopy or homology groups [MBD: ref here]. The lat-60

ter are invariant to many transformations, in particular to homeomorphisms like rota-61

tions, stretching or scaling of the underlying topological space [20]. Persistent homol-62

ogy (PH)— an extension of homology [7] has had successful applications [11, 16, 22],63

notably in time-series classification [17] or parameter inference [10]. An application64

of TDA to music analysis in Ref. [24] uses Takens’ embeddings of waveforms of single65

musical notes and persistent rank functions to discriminate between musical instru-66

ments. Bendich et al represent an audio track (e.g., a song) as a point cloud, and then67

use principal component analysis and TDA to create a graph representation of the68

track which enables analysing its structure [2]. In these cases, a common assumption69

is that underlying the time-series of the waveform, there is a dynamical system, and70

its periodic nature is characterized by the persistent homology of its sliding window71

embedding. In the case of music, the waveform is a superposition of many changing72

signals (for example instruments).73

In this work, we focus on the task of 1–vs–1audio identification using topological74

tools. Our main contribution is to demonstrate how homology can capture features of75

tracks relevant for audio identification. We extract audio fingerprints using persistent76

homology features of spectral representations of the audio, and use them to develop77

an identification algorithm. We compare the performance of our method under sev-78

eral obfuscation scenarios, and show that it performs comparably with established79

methods, and in certain scenarios it can attain better performance.80

HERE81

1.1. Outline. After background on spectral representation in section 2, we pro-82

pose the fingerprinting method section 3: a brief recall on persistent homology sec-83

tions 3.1 and 3.2 is followed by how we derive robust characteristics from spectral84

features section 3.3. The track-level algorithm is introduced in section 3.4. The85

experimental results and the discussion follow in section 4 and section 5 respectively.86

2. Spectral representations. An audio signal s ∈ C([0, T ];R) is a continuous87

function. It is often represented in the time-frequency domain, using the short-time88
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Fourier transform [12], defined in (2.1)89

(2.1) S(t, f) =

∫
R
s(τ)ω(t− τ) exp(−ı̇f t)dτ,90

where ω(t) is a bell-shaped window function, centred at zero with finite support.91

In digital audio processing, the signal is a collection of samples s = (si)
Ns
i=1, where92

Ns = Tfs and fs is the sampling rate. A spectral representation is obtained with the93

discrete short-time Fourier transform [12]94

(2.2) Ŝ(m,n) =

∞∑
k=−∞

skωk−hn exp

(
−ı̇kmfs

Nω

)
,95

where h is the hop size and (ωk)Nω−1
k=0 is a discrete version of ω(t). We choose the96

popular Hann window [18], defined in (2.3).97

(2.3) wk =

{
1
2

(
1− cos

(
2πk
Nω−1

))
if 0 ≤ k ≤ Nω,

0 otherwise.
98

Finally, we define S ∈ RN×M to be the magnitude of the spectrogram Ŝ,99

(2.4) Sm,n =
∣∣∣Ŝ(m,n)

∣∣∣ .100

The entry Si,j is the intensity of frequency fi in the spectral decomposition of the101

signal convolved with w centred at ti. We will think of it as the loudness of a pitch of102

frequency fi around the time ti in the audio signal. We change the frequency scale of103

the spectrogram defined in (2.4) to the mel-scale, introduced in [27]. In this spectral104

representation, called the mel-spectrogram and shown in Figure 1, the frequency bins105

match the logarithmic frequency resolution of the human ear better than the equal-106

length, evenly-spaced bins of the short-time Fourier transform [27].107

Because of the correspondence of visual patterns to auditory signals, we can cast108

the audio identification problem in terms of image comparison. Since the auditory109

features used for audio identification are usually local both in time and frequency,110

they correspond to small regions in the image. Since the image representation is not111

invariant to operations like tempo or pitch shifting, it is common to use fingerprints112

which are instead [1, 33]. We propose a topological fingerprinting technique.113

In this work, we use audio files sampled at 44.1kHz. Spectral features are ob-114

tained with an implementation [18] of the mel-spectrogram, with 128 frequency bins,115

a window length Nw = 1024 and a hop size h = 256. For audio signals of length116

T = 30s, the spectrogram has Tfs/h = 5168 columns, and, given the fixed number117

of rows, the resulting mel-spectrogram is a matrix of size 128 × 5168, shown at the118

bottom of Figure 1.119

3. Topological fingerprints from spectrograms. We propose a method to120

fingerprint audio signals. After computing the spectrogram, we segment it in time.121

Each such segment induces a cubical complex and a filter function. We compute the122

persistent homology groups of dimensions zero and one on all of the segments. We123

represent the resulting topological features as Betti curves and we call this collection124

of vectors the fingerprint of that track.125
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Fig. 1: Two representations of a 30-second fragment of the track The Morning, by Le
Loup [15]. The top figure shows the graph of the digital audio signal in time, called the
waveform. The bottom figure is the mel-spectrogram of that track - an image, where
each column is a spectral decomposition of a short fragment of the track, convolved
with a windowing function (2.3). The bottom rows of the spectrogram correspond to
lower-frequency sounds and depict the rhythm.

3.1. Homology and persistent homology. Introduction to TDA is to be126

found in [21, 6], cubical complexes are studied in detail in [13], and for the algorithmic127

details, see [31, 6].128

Homology groups provide some description of a topological space X. For example,129

the zero-, and one-dimensional homology groups, denoted H0(X), H1(X), correspond130

to connected components and holes, respectively. Formally, homology relies on the131

concept of chain complexes (Ck(X))k∈N, linked by homomorphisms ∂k : Ck(X) →132

Ck+1(X) called boundary operators. We call the k-dimensional cycles elements of the133

kernel of ∂k, denoted by ker(∂k) and boundaries the elements of Ck(X) which are in134

the image of ∂k+1, denoted by im(∂k+1). The k-dimensional homology group is then135

the quotient of k-cycles by k-boundaries Hk(X) = ker(∂k)/im(∂k+1). Hence, in that136

interpretation, a non-trivial class in Hk(X) is a k-cycle, which is not the boundary of137

a k + 1-dimensional structure. An example of a cubical complex X is138

(3.1) A B C

DEF

139

Here X is a collection of vertices, segments and 2-cubes. If we denote by AB the edge140

between A and B, the formal sum c = AB +BE + EF + FA is a cycle and also the141

boundary of the 2-cube ABEF . Hence, even though c is a 1-cycle, it is homologically142

trivial since it is also the boundary of a cube of a higher dimension. In H0(X), there143

are two distinct equivalent classes: one comprised of the vertex D and one of all the144

others.145

Persistent homology [35] is an extension of homology, which applies to collections146

of spaces, instead of a single space. Consider an ordered set (S,≤) and a family of147
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Fig. 2: Top: A filtration (Xs)
4
s=1 of the cubical complex X and the Betti numbers -

the dimensions of the homology groups of each of the spaces. X1 has no cycles and 3
connected components. By adding the 1-cube AB, the two corresponding homology
classes become homologous. The first homology group H1(X3) becomes non-trivial
after the addition of BE, which creates the non-trivial cycle c = AB+BE+EF+FA.
It is in turn contractible in X4, when ABEF appears. Bottom: The persistence
diagrams for the filtration in Figure 2. The persistence diagram of dimension 0 is
comprised of 2 points: (0,∞) with multiplicity 2 and (1, 2) with multiplicity 1. The
diagram of dimension 1 has a unique point (3, 4). The dashed diagonal corresponds
to points for which the birth is equal to the death: it is formally added to persistence
diagrams, with infinite multiplicity.

spaces (Xs)s∈S . We call it a filtration, if it preserves the order induced by inclusions148

s ≤ s′ =⇒ Xs ⊆ Xs′ [35]. The inclusion morphisms Xs ↪→ Xs′ induce morphisms149

between homology groups ιs,t : Hk(Xs) → Hk(Xt), that we can calculate for each150

space. We are particularly interested in the cases when ιs,t is not an isomorphism, as151

this implies either the creation or annihilation of a non-trivial homology class.152

In applications, since S is finite, we often suppose S ⊂ N. Then, for a not-153

surjective (or non-injective) map ιs+1
s , we say that a homology class is born (or dies)154

at Xs+1. We call s+ 1 a birth (or death) value.155

The birth and death values are paired with persistent homology, and summa-156

rize the information it contains [5]. One representation is the persistent diagram —157

a multi-set of birth-death pairs (b, d), with the diagonal (s, s), s ∈ S with infinite158

multiplicity. An example of persistence diagrams for persistent homology groups of159

dimensions 0 and 1 is shown in Figure 2.160

3.2. Persistent homology of cubical complexes. We have introduced ho-161

mology, in the general setting of topological spaces. In applications, we often work162
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0-cube
(Vertex)

1-cube
(Edge)

2-cube

Vertex not in
the complex

Fig. 3: On the left, an example of a collection of cubes of different dimensions, where
two 0-cubes, two 1-cubes and one 2-cube are annotated. While the cubes are of
different dimensions (0, 1 or 2), they share the embedding dimension 2. This collection
is a cubical complex. On the right, a collection of cubes that is not a cubical complex.
The annotated vertex is not in the collection, but the 1-cube incident to it is, violating
the first property from Definition 3.1.

with discrete structures, what makes the homology computations tractable. The163

method we propose uses cubical complexes [13] - collections of cubes of different di-164

mensions, depicted in Figure 3. A cube Q = I1 × . . .× Id is a product of elementary165

intervals I1, . . . , Id of the form [a, a], [a, a+ 1], a ∈ Z. We say that166

• d is the embedding number of Q,167

• dim(Q) = |{l | Il is not degenerate}| is the dimension of Q,168

• Q is called a vertex if dim(Q) = 0.169

Cubes have geometric faces. A cube Q2 is said to be a face of a cube Q if Q2 ⊂ Q.170

Moreover, if dim(Q2) = dim(Q)− 1, Q2 is a proper face of Q.171

Definition 3.1. Let K be a collection of cubes of the same embedding dimension.172

Then, K is a cubical complex if173

• for any cube Q ∈ K, its faces are also in K,174

• for all cubes Q1, Q2 ∈ K, the intersection Q1 ∩Q2 ∈ K is either empty or a175

face of Q1 and Q2,176

Examples of a cubical cubical complex and a collection of cubes that is not a cubical177

complex are presented in Figure 3.178

We work with cubical complexes, because they mimic the structure of spectro-179

grams or matrices. There are two concurring ways of representing an image as a180

cubical complex [9]: T-construction [34] and the V-constuction [23]. In the former,181

each pixel corresponds to a two-cell in the complex, while, in the latter, each pixel is182

a vertex, and a higher dimensional structure is built on it. The difference between the183

two constructions is illustrated in Figure 4. We choose the vertex-construction, which184

reflects the proximity in the spectral domain more than the top-cell construction: only185

neighbouring pixels from the same row (or column) can be directly connected, while186

there is no edge (one-cube) between the diagonal elements.187

From the overview of persistent homology from 3.1, we need to specify three188

elements to be able to compute persistent homology from images: the group of chains189

and the boundary operator for a cubical complex, as well as the filtration.190

The groups of chains are the algebraic counterparts of the geometric cubes, so191

that, a 1-cube has its associated 1-chain. We ‘add’ two cubes by taking their union,192
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Fig. 4: On the left, a grayscale image. In the vertex construction, at the top, each
pixel from the image is a 0-cube, while in the top-cell construction, at the bottom, it
is a 2-cube. The top-right figure illustrates the super-level set K17 - the 1-and 2-cubes
were added to the 0-cubes on the figure in the centre and assigned filtration values
according to the upper-star filtration construction. An analogous process is shown on
the bottom figure, where 0- and 1-cubes were added.

and the group of chains is spanned by the linear combinations of cubes. The boundary193

operator acts on cubes and returns the geometric boundary, decomposed on the set194

of cubes of lower dimension. For example, the boundary of a 1-cube is a collection195

of two 0-cubes - its endpoints. The detailed definitions are available in introductory196

material [31, 13].197

Regarding the filtration, we first recall that the values of pixels in the image give198

us an R-valued function on the vertices, which we will call a filter function. There are199

two ways natural ways to extend it to the complex and which lead to filtrations.200

Definition 3.2. Let f : V (K) → R be a function defined on the vertices V (K)201

of a cubical complex K. The lower-star filtration associated to f is Kf = (Ks)s∈R,202

where203

(3.2) Ks = {Q ⊂ K | f(v) ≤ s, ∀v ∈ V (Q)}.204

205

We work with the upper-star filtration (Ks)s∈R, which is defined analogously to Def-206

inition 3.2, but reversing the order in (3.2),207

(3.3) Ks = {Q ⊂ K | f(v) ≥ s, ∀v ∈ V (Q)}.208

Strictly speaking, (Ks)s∈R is not a filtration. The order of inclusions is now reversed209

Ks ⊂ Ks′ , for all s ≥ s′, but thanks to the monotonicity of the sequence, we can210

still compute the persistent homology, with the morphisms is
′

s in the other direction.211

Therefore, we will still call it a filtration.212

In practice, computing persistent homology on an upper-star filtration from a213

function f is done by computing that of the lower-star filtration on f̃ : s 7→ −f(s),214
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Fig. 5: In the middle, the vertex construction from the image on the left. The
super-level set filtration of the underlying cubical complex yields non-trivial persistent
homology classes only in dimension zero they are shown on the persistence diagram
on the right.

which induces the same ordering of vertices as the upper-star filtration would have.215

To retrieve the original scale and ordering, we map the points from the persistence216

diagram (b, d) 7→ (−b,−d). This leads to the unusual situation, where −b ≥ −d and217

points appear below the diagonal in the birth-death plane.218

3.3. Fingerprinting of spectral features. In section 3, we summarized the219

fingerprinting process for an image. We can now provide more details regarding the220

underlying complexes, built on windows from the spectrogram, the filter functions221

and the Betti curve representations. We divide the spectrogram into one-second,222

overlapping windows, of size Nf × NT = 128 × 170. With the overlap between suc-223

cessive windows set to 0.4, a 30-second snippet results in 51 windows that start at224

0., 0.6, 1.2, . . .. For each window W , we define a cubical complex K, with vertices in225

a Nf ×NT lattice. We convert each window to the decibel scale,226

(3.4) Wi,j 7→
log10(Wi,j)− log10(min(W ))

log10(max(W ))− log10(min(W ))
,227

and normalize (3.4) it, before interpreting it as a function fW : V (K)→ R, which we228

extend to a filtration of the full-complex K via an upper-star filtration. We compute229

the persistent homology groups on this filtered complex. Finally, we represent the230

persistent diagrams as Betti curves [26]. For the k-th diagram Dk, the k-th Betti231

curve (3.5) represents the evolution of Betti numbers throughout the filtration, where232

the Betti number associated to a homology group is its rank.233

(3.5)
βk : R → N

x 7→
∑

(d,b)∈Dk

1]d,b](x),234

where 1]d,b](x) = 1 if and only if x ∈]d, b] and 0 otherwise.235

3.4. Comparing tracks. We compare tracks by comparing their fingerprints236

and state whether the two tracks match or not. Similarly to [32], we use the fin-237

gerprints of s, s′, and their time-stamps, trying to find an alignment of the former238

in the latter. However, given that fingerprints section 3.3 are not hash values, we239

do not look for exact matches, but ‘similar enough” fingerprints. We introduce the240

notation for comparing sets of fingerprints, and present the algorithm. Consider two241

tracks s and s′ and divide their spectrograms into collections of overlapping windows242

This manuscript is for review purposes only.
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Fig. 6: The Betti curves β0 and β1 for the persistent diagrams of dimension zero and
one from Figure 5.

{Wi}Ns
i=1, {W ′j}

N ′
s

j=1 as described above. For each window, Wi, we compute its Betti243

curves βi,0, βi,1 for homology dimensions zero and one and we proceed similarly for244

W ′. Given two windows Wi and Wj , we compare them via the distance between their245

Betti curves. We compare every window Wi to all windows {W ′j}j . Repeating so for246

all windows {Wi}i, we obtain distance matrices M0, M1 ∈ RNs×Ns′ defined in (3.6)247

(3.6) (Mk)i,j = ‖βi,k − β′j,k‖L1 .248

Now, we have synthesized all the information from two tracks in matrices M0, M1,249

and the midpoint locations of windows tk, t
′
k. We define C as a linear combination of250

matrices M0, M1,251

(3.7) C = λM0 + (1− λ)M1 ∈ RNs×Ns′ ,252

with λ ∈ [0, 1]. Then, Ci,j represents how distant the window Wi centred at ti in s, is253

from the t′j-centred window W ′j in s′. We find a minimal-cost matching in C using an254

implementation of the Hungarian algorithm [30, 14]. The solution is a binary matrix255

X of size Ns × Ns′ , where Xi,j = 1 if the window centred at ti is paired with the256

window centred at t′j . This gives us a set of points P = {(ti, t′j − ti) | Xi,j = 1}.We257

do a linear regression on P , obtaining a function L(t) and assess the quality of the fit258

with the median of the error (3.8),259

(3.8) ∆L,P = median(ti,t′j)∈P
∣∣L(ti)− (t′j − ti)

∣∣ .260

We use a logistic regression model on ∆L,P to determine the whether the tracks s, s′261

match.262

The robustness of the method stems from two factors. First, if s was in fact263

s′ modified with an obfuscation, we expect to find that the matching windows are264

aligned in time, what corresponds to points from P forming a line. With (3.8), the265

error is zero, if at least half of the pairs match well. Second, when we change the266

assignment of two windows (Xi1,j1 = 1, Xi2,j2 = 1 becomes Xi1,j2 = 1, Xi2,j1 = 1,267

for some row indices i1, i2 and column indices j1, j2), the linear model is altered, but268

the median error should remain small.269

4. Experiments and results. The fingerprinting and comparison methods de-270

scribed in sections 3.3 and 3.4 are tested on the duplicates problem: for a pair of271

tracks s, s′, it consists of deciding whether one has been modified, through obfusca-272

tions, to yield the other. For example, if s′ is s, to which a low-pass filter has been273

applied, they constitute a positive pair and we say that s is the parent of s′.274
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Type Degree
Low-pass filter 1000, 1500, 2000, 3000,
High-pass filter 1500, 2000, 2500, 3000,
White-noise 0.05, 0.1, 0.2, 0.4,
Pink-noise 0.05, 0.1, 0.2, 0.4,
Reverb 40, 70, 100,
Pitch shift 0.8, 0.85, 0.9, 1.05, 1.15, 1.2,
Tempo shift 0.8, 0.85, 0.9, 1.05, 1.15, 1.2.

Table 1: Obfuscation types and degrees that were used to generate the set of ob-
fuscated tracks. In low- and high-pass filters, the degree is the threshold frequency,
so the higher the threshold, the smaller (greater) the obfuscation respectively. For
white-noise, pink-noise and reverb, the smaller the degree, the closer the obfuscated
track is to the original. Finally, for tempo and pitch shifts, a degree of 1 is the identity,
while a displacement in either of the two directions increases the obfuscation.

We generate a dataset of 3466 positive and negative pairs of tracks. First, we275

sample 35, 393 tracks from the Million Song Dataset [3] and we download the cor-276

responding 30-second preview snippets using the Spotify Web-API. To generate a277

positive (matching) pair, we choose a track, an obfuscation type and an obfuscation278

degree. We apply the obfuscation to that track, thus creating a new audio signal,279

and pair it with the original track. A negative pair consists of two different, possibly280

obfuscated, tracks.281

We consider seven different types of obfuscations, each with three to six degrees of282

intensity. The degree determines to what extent the track is distorted- for example,283

a tempo shift with a factor of 1.05 indicates that the track has been sped up by284

a factor of 0.05, without changing its pitch. Obfuscations, summarized in Table 1,285

are generated using a Python wrapper of SOX [4]. We show an example of a raw286

fragment and its obfuscated version in Figure 7. While the addition of noise has no287

visible effect on the whole spectrogram, we can see its influence when examining the288

small windows. The corresponding Betti curves and the distances between them are289

shown below. The distances between the pairs of windows from the two tracks lead290

to the cost matrix.291

We conducted the experiment on a subset of pairs. We have sampled 3466 (out of292

the 62000) positive and negative pairs at uniformly at random, what resulted in 50.2%293

positive pairs. We use the fingerprinting method from section 3.3 and the comparison294

algorithm proposed in section 3.4. The cross-validation results shown in Figure 8 led295

us to setting λ = 0.33, with which we obtain 84.7% recall and 99.0% precision.296

The ROC is shown in Figure 9 and the AUC is 0.9374. On the same set, using297

the reference method and the counts [32] as a signal, we obtain get an AUC of 0.9214.298

However, in that case, the thresholds are integers, what may bias the AUC.299

Our method is challenged by the high-pass obfuscations, which would indicate300

that most of the information is encoded in the lower regions of the spectrogram.301

We believe that despite the attenuation of the low frequency spectrum in the mel-302

spectrogram compared to the spectrogram, the maximum of the filter function is still303

attained in that region. Hence, as a high-pass filter attenuates this maximum, it304

also impacts the distribution of values of the filter function, what is reflected by big305

differences in the Betti curves. The benchmark method shows poor performance on306
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Fig. 7: The fingerprinting and comparison algorithm applied to a track [15] and its
obfuscated version. From the two normalized mel-spectrograms, we create the cost
matrix based on topological fingerprints. In particular, for each pair of windows, we
compare the Betti curves and record the norm of their difference. From that distance
matrix, we compute a minimal matching and build the collection of points shown at
the bottom.

time-stretched tracks, due to the alignment algorithm. It is different from our as307

it takes only the mode of the offsets of matching hashes, rather than calculating a308

possible stretch factor as we do (3.8).309

5. Discussion. We proposed a new audio fingerprinting method based on the310

persistent homology of spectral representations of tracks. We test the fingerprints,311

and a tailored identification algorithm, on a set of obfuscated pairs of tracks. Our312

results indicate that, compared to a standard 1–vs–N method, our fingerprints present313

more invariance to time stretching, but are more affected by filters which attenuate314

the low-frequency region. While the fingerprints are more expensive to compute and315

compare, making immediate generalizations to a 1–vs–N method impractical, the316

results show that the invariance captured by persistent homology is relevant for audio317

identification.318

Further research should address two issues: poor performance on high-pass filters319
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Fig. 8: Cross validation with 4 folds. Highest AUC values are reached for 0.1 ≥ λ ≤
0.45. While the maximum is attained at λ = 0.33, any value in that range could
be acceptable due to the large the standard deviation of the metric between folds.
Nevertheless, we notice that the information carried by β1 proves relevant.
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Fig. 9: The receiver operating characteristic in red, for binary classification, using the
error defined in (3.8). We can see that the false positive rate is below 1%, even for
recall around 87%. In blue, the analogue curve for the Shazam method. The area
under the ROC is 0.9391 and 0.9214 for our and the Shazam method respectively.

and potential generalization to a 1–vs–N method. In an attempt to address the first,320

we have tried to section the spectral windows not only in time, but also in frequency321

(comparing windows from within the same frequency only). While this fine-grained322

comparison allows to ’filter-out’ whole spectral regions which may have been altered,323

the results on the whole dataset did not improve what indicates that another matching324
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Obfuscation type Degree Recall Recall Shazam
highpass 1500.00 0.040 1.000

2000.00 0.000 1.000
2500.00 0.045 1.000
3000.00 0.000 1.000

lowpass 1000.00 0.952 1.000
1500.00 1.000 1.000
2000.00 1.000 1.000
3000.00 1.000 1.000

pinknoise 0.05 1.000 1.000
0.10 1.000 1.000
0.20 1.000 1.000
0.40 0.950 1.000

pitch 0.80 1.000 1.000
0.85 1.000 1.000
0.90 1.000 1.000
1.05 1.000 1.000
1.15 1.000 1.000
1.20 1.000 1.000

reverb 40.00 1.000 1.000
70.00 1.000 1.000
100.00 0.909 1.000

tempo 0.80 1.000 0.000
0.85 1.000 0.000
0.90 1.000 0.000
1.05 1.000 0.276
1.15 1.000 0.067
1.20 1.000 0.000

whitenoise 0.05 1.000 1.000
0.10 1.000 1.000
0.20 1.000 1.000
0.40 0.727 1.000

Table 2: Comparison of recall for the proposed method against the benchmark [32].
The proposed method shows perfect robustness to the applied tempo obfuscations.
On the other hand, it is affected the most by highpass filters. For higher degrees of
obfuscation, there a few non-identified matches for white- and pink-noise, as well as
reverb.

algorithm might be necessary. A 1–vs–N system can be proposed provided that we325

have a method to search for nearest neighbors in the space of features derived from326

persistence diagrams. A possible solution consists of replacing Betti curves with hash327

functions for persistence diagrams. While a family of hash functions has been proposed328

for persistence diagrams [8], its suitability for this particular application needs to be329

assessed.330
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