
3-DEFORMATIONS OF 2-COMPLEXES AND MORSE THEORY

XIMENA FERNÁNDEZ

Abstract. We introduce novel combinatorial methods to study 3-deformations of CW-
complexes of dimension 2 or, equivalently, Q∗∗-transformations of group presentations.
Our procedures are based on a new version of Discrete Morse Theory for n-deformations.
We apply these techniques to show that some known potential counterexamples to the
Andrews-Curtis conjecture do satisfy the conjecture.

The Andrews Curtis conjecture is an extensively studied open problem in two-dimensional
geometric topology, with roots in Whitehead’s simple homotopy theory [29, 30] and com-
binatorial group theory. This conjecture is closely related to other relevant problems in
algebraic topology, such as Whitehead asphericity conjecture [28], Zeeman conjecture [32]
and the Poincaré conjecture (now a theorem). It states that if K is a (finite) contractible
CW-complex of dimension 2, then it 3-deforms to a point, i.e. it can be transformed into a
point by a sequence of expansions and collapses in which the dimension of the complexes
involved is not greater than 3. Although the conjecture is known to be true for some classes
of complexes (such as the standard spines [24] and the quasi-constructible complexes [3]),
it still remains open for general 2-complexes.

The conjecture was originally stated in terms of group presentations [1]. Namely, given
a balanced presentation of the trivial group P = 〈x1, . . . , xn | r1, . . . , rn〉, the conjecture
states that P can be transformed into the empty presentation 〈 | 〉 by a finite sequence of
the following operations, which we call AC-transformations:

(1) replace some ri by r−1i ;
(2) replace some ri by rirj , j 6= i;
(3) replace some ri by wriw−1 (where w is any word in the generators);
(4) introduce a new generator y and the relator y, or the inverse of this operation.

Computational approaches have shown to be limited by the exponential complexity of
the algorithms (see [6, 7, 18, 20, 21, 22]). In this article, we present new methods which
combine topological and combinatorial tools, that allow the computational exploration
of presentations which are Andrews-Curtis equivalent from a given one. These alternative
techniques to explore the AC-transformations, based on Morse Theory, enable us to analyze
some of the potential counterexamples to the conjecture.

We will work simultaneously with both formulations of the conjecture - whose equiva-
lence was first noticed by the anonymous referee of the foundational article [1]-. In the same
way as the collapses and expansions determine classes of (simple) homotopy of spaces, the
transformations (1)-(4) define classes of group presentations, the AC-classes. Moreover,
there is a correspondence between 3-deformation classes of complexes of dimension 2 and
AC-classes of group presentations. There is a standard way to associate a presentation
PK to any 2-complex K and, conversely, a 2-complex KP to every presentation P. See
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2 XIMENA FERNÁNDEZ

[16, Ch. I, Sec. 1.3, 1.4]. We describe briefly this procedure in Section 1. Given bal-
anced group presentations P,Q, if P can be transformed into Q by a finite sequence of
AC-transformations, we say that P is AC-equivalent to Q, and we denote P ∼AC Q. It
can be shown that P ∼AC Q if and only if KP 3-deforms to KQ (denoted by KP �↘3 KQ).
Similarly, if K,L are CW-complexes of dimension 2, K�↘3 L if and only if PK ∼AC PL.
Moreover, P ∼AC PKP and K�↘3 KPK

. Balanced presentations of the trivial group
correspond to contractible complexes.

In [16], the Andrews-Curtis conjecture is stated in terms of Q∗∗-transformations, which
allow an additional elementary operation:
(5) in the relators, replace xi throughout by x−1i or xixj or xjxi, with j 6= i.
If a finite group presentation P can be transformed into another one Q through a sequence
of operations (1) to (5), it is said that P is Q∗∗-equivalent to Q, and denoted by P ∼Q∗∗ Q.
By Nielsen’s Theorem, operation (5) is not necessary for balanced presentations of the
trivial group; i.e., P ∼Q∗∗ 〈 | 〉 if and only if P ∼AC 〈 | 〉.

Discrete Morse theory provides combinatorial tools to describe simpler cell decomposi-
tions of a given CW-complex (up to homotopy equivalence). In this article we extend the
scope of this theory to make it appropriate for handling 3-deformations of 2-complexes and
the Andrews-Curtis conjecture. Concretely, given a regular n-complex K and a discrete
Morse function on it, we construct an explicit, algorithmically computable cell decompo-
sition of a complex that (n+ 1)-deforms to K. Our goal is to generate a method to obtain
new presentations AC-equivalent to a given one without requiring to specify the exhaustive
list of movements to transform one into the other, since it could be out of reach (see [7]).

Given P a finite group presentation, denote by K ′P the barycentric subdivision of KP .
We define XP , the presentation poset of P, as the face poset X (K ′P) of K ′P , that is, the
poset of cells of K ′P ordered by inclusion. We will introduce some combinatorial techniques
to study the AC-class of a given presentation P, by means of its presentation poset XP .
In Section 1, we define a presentation P ′ associated to a subdiagram of the Hasse diagram
of XP and characterize a class of subdiagrams such that P ′ results AC-equivalent to P. In
Section 2, we make the reformulation of discrete Morse theory in terms of n-deformations,
and associate to each acyclic matching in the Hasse diagram of XP a presentation Q such
that P ∼AC Q. In Section 3, we present some applications of our methods to investigate
potential counterexamples to the conjecture (see [17, Sec. 4.2.]). The results of this article
are part of the author’s PhD Thesis [11].

Independently, Brendel, Dlotko, Ellis, Juda and Mrozek presented in [5] an algorithm to
describe a presentation of the fundamental group of a regular CW-complex, using Forman’s
combinatorial version of Morse theory. They applied it in a classification problem of prime
knots, and to compute the fundamental group of point clouds.

1. Presentations and posets

We recall briefly the main concepts in simple homotopy theory. We refer the reader
to [10, 16] for a more complete exposition. All the CW-complexes in this article will be
finite and connected. Given a CW-complex K and a subcomplex L of K, we say that
K elementary collapses to L, and we denote it by K↘e L, if K = L ∪ en−1 ∪ en with
en−1, en /∈ L and there exists a map ψ : Dn → K such that ψ is the characteristic map
of en, ψ|

∂DnrDn−1 is the characteristic map of en−1 and ψ(Dn−1) ⊆ Ln−1. In general,
K collapses to another L (or L expands to K) if there is a finite sequence of elementary
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collapses from K to L. We denote it by K↘ L (resp. L↗ K), We say that a CW-complex
K n-deforms to L, and we denote it by K�↘n L, if there is a sequence of CW-complexes
K = K0,K1, · · ·Kr = L such that for each 0 ≤ i ≤ r − 1, Ki↘e Ki+1 or Ki ↗e Ki+1, and
dim(Ki) ≤ n for all 1 ≤ i ≤ r. For every 0 ≤ i ≤ r − 1, there is a homotopy equivalence
fi : Ki → Ki+1 which is an inclusion or a retraction depending on whether Ki ↗e Ki+1

or Ki+1↘e Ki respectively. In that case, K and L are then related by a deformation
f : K → L defined to be the composition of the retractions and inclusions as above, i.e,
f = fr−1 · · · f1f0. Notice that if K�↘n L, then K and L are homotopically equivalent.

If K is a finite CW-complex of dimension 2 and T is a spanning tree of K(1) (the 1-
skeleton of K), then K�↘3 K/T and PK is defined as a presentation of the fundamental
group of K/T . Different choices of spanning trees result in AC-equivalent presentations
(see [16, Ch. I, Sec. 2.3.][31]). It is important to note that PK has not only the information
about the fundamental group of K, but also about its 3-deformation class.

In this section we extend the idea of obtaining new spaces which 3-deforms to a given
one, by taking an appropriate quotient space of it. We also interpret these methods in the
context of subdiagrams of posets. Recall that a poset X can be represented as a directed
graph, its Hasse diagram (denoted by H(X)) whose vertices are the elements of X, and
whose edges are the pairs (x, y) such that x ≺ y, i.e., x < y and there is no z ∈ X satisfying
x < z < y. A chain in X is a totally ordered subposet of X. The height ht(X) of a finite
poset X is one less than the maximum number of elements in a chain in X. The height
ht(x) of a point x in X is the height of the subposet of X given by the elements y ∈ X
such that y ≤ x. All the posets in this article will be finite and connected (that is, its
Hasse diagram will be a finite connected graph).

Definition 1.1. Let X be a poset of height 2 and let C be a subgraph (also called
subdiagram) of H(X). We say that (x, y) is an extremal pair of X if x < y, ht(x) = 0 and
ht(y) = 2. For every extremal pair (x, y) of X, if there exists any chain cx,y : x ≺ z ≺ y
such that at least one of its edges is not in C, fix a preferred one. We associate to (X,C)
a group presentation PX,C whose generators are the edges of H(X) not belonging to C,
and whose relators are induced by the digons (i.e. pairs of monotonic edge paths that only
meet in the extremal points) containing a preferred chain. If the preferred chain x < z < y
and the chain x < z′ < y form a digon, then the induced relator follows from the equality
of the words read off from these chains.

To every finite poset X one can associate a finite simplicial complex K(X), the order
complex of X, whose vertices are the elements of X, and whose simplices are the nonempty
chains of X. In Theorems 1.3 and 1.7 we will show that, for conveniently chosen subdia-
grams C, the presentation PX,C associated to a poset X is AC-equivalent to the classical
presentation PK(X) of the associated complex, independently of the choice of the preferred
chains.

Example 1.2. Consider the two different subdiagrams, identified with dotted lines, of
the finite poset of Figure 1 whose order complex is a triangulation of the Projective Plane.
Since there are only two chains between every pair of points of heights 0 and 2 respectively,
any choice of preferred chains will result in the same presentation. C1 is a spanning tree
of H(X) and C2 has all the vertices of X and satisfies that K(C2) is collapsible. We
get PX,C1 = 〈x1, x2, . . . , x12 | x8 = 1, x1x6 = 1, x1x7x

−1
2 = 1, x2x9x

−1
5 = 1, x10 =

1, x6x
−1
12 = 1, x7x

−1
11 = 1, x5 = 1, x8x

−1
10 = 1, x12 = 1, x4x11,= 1 x9 = 1〉 and PX,C2 =
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Figure 1. Subdiagrams C1 and C2 of H(X).

〈x1, x2, . . . , x7 | x1x7 = x6, x1 = x5, x3 = 1, x2 = x3, x2x6 = 1, x5 = x3, x4 = 1, x4 =
x7〉. Note that PX,C1 and PX,C2 are presentations of Z2.

Theorem 1.3. Let X be a finite poset and T be a spanning tree of H(X). Then, PX,T ∼AC
PK(X).

Proof. Let T be a spanning tree of H(X). Note that we can think of T as a spanning
tree of the 1-skeleton of K(X), since there is an inclusion H(X) ⊆ K(X)(1) into the 1-
skeleton, viewed as undirected graphs. Fix an orientation of the 1-cells inherited from the
partial order in X. Let PK(X),T be the presentation of the fundamental group of K(X)/T
obtained by the previously selected orientation of the 1-cells. We verify that PK(X),T can
be transformed into PX,T through AC-transformations. For every extremal pair (x, y) of
X, fix a preferred chain c0xy : x < z < y such that at most one of the edges (x, z) and
(z, y) is in T (note that such a chain exists for every extremal pair because T has no
cycles). Label e1, . . . , er the edges in H(X) r T . Call w0

xy the word associated to c0xy in
the free group F (e1, . . . , er) generated by e1, . . . , er. For every other chain cixy between x, y
(1 ≤ i ≤ nxy), call wixy the associated word. Thus, the generators of PX,T are e1, . . . , er,
and its relators are (wixy)

−1w0
xy for every extremal pair (x, y) of X and for every chain

cixy 6= c0xy. Summarizing,

PX,T = 〈e1, . . . , er | {(wixy)−1w0
xy : (x, y) extremal pair of X, 1 ≤ i ≤ nxy}〉.

On the other hand, if we denote exy the edge in K(X)(1) associated to the extremal pair
(x, y), then

PK(X),T = 〈e1, . . . , er, exy | {e−1xy w0
xy, (wixy)

−1exy : (x, y) extremal pair of X, 1 ≤ i ≤ nxy}〉.

For every extremal pair (x, y) call ri = (wixy)
−1exy, r0 = e−1xy w

0
xy. In PK(X),T , replace ri

by rir0 = (wixy)
−1w0

xy, and finally eliminate the generator exy together with the relator
r0 = w0

xyexy. �

Corollary 1.4. Let X be a finite poset of height 2. Then, different choices of a spanning
tree in H(X) and preferred chains between related maximal and minimal elements of X
give rise to AC-equivalent presentations of π1(X).

Proof. The proof of Theorem 1.3 shows that for any choice of preferred chains, if we fix T
a spanning tree in H(X), then PX,T ∼AC PK(X). Since the AC-equivalence class of PK(X)

does not depend on the spanning tree T the same holds for PX,T . �
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We now extend the class of good choices of subdiagrams of a poset to collapsible sub-
diagrams containing a spanning tree (that is, subdiagrams containing all the vertices such
that its order complex is collapsible).

Proposition 1.5. Let K be a CW-complex of dimension 2. Let A ≤ K be a collapsible
subcomplex containing all vertices of K. Then PK/A ∼AC PK .

Proof. Since A is a collapsible subcomplex of K, there exists a sequence of elementary
collapses of decreasing dimension from A to a point. Let T be the maximal 1-dimensional
subcomplex of K in that sequence. Thus,

A↘e Ar {e1, e′1}↘e Ar {e1, e′1, e2, e′2}↘e . . . ↘e Ar {e1, e′1, e2, e′2, . . . , ek, e′k} = T ↘ ∗
and T is a spanning tree in K1. We will see that PK/A ∼AC PK , where the latter is
constructed using the spanning tree T . Call A0 := A, Ai := Ai−1 r {ei, e′i} for i ≥ 1. We
will prove inductively that PK,Ai ∼AC PK,Ai+1 . Since Ai−1↘e Ai, ei is a free face of e′i in
Ai−1. Notice that if

PK/Ai−1
= 〈x1, x2, . . . , xn | r1, r2, . . . , rm〉

then,
PK/Ai

= 〈x1, x2, . . . , xn, ei | eεi , e
ε1
i r1, eiε2r2, . . . , e

εm
i rm〉,

where ε = ±1, depending on the orientation of e′i, and

εj =

{
±1 if ei ≺ e′j (where the sign depends on the orientation of ei)
0 if ei ⊀ e′i.

for all 1 ≤ j ≤ m. Note that the first relator corresponds to the word spelled on the
boundary of e′i. Now, for every j such that εj 6= 0, multiply to the left by e−εji (inverting
the relator eεi if necessary). Finally, invert the relator eεi if necessary to get the relator ei
and simplify the generator ei with the relator ei. As a result of the previous sequence of
AC-transformations, we transform PK/A into PK/T . �

Theorem 1.6. Let X be a finite poset of height 2 and A be a spanning subdiagram of
H(X). If K(A) is collapsible, then PX,A ∼AC PK(X)/K(A).

Proof. We will exhibit a sequence of AC-moves to transform PK(X)/K(A) into PX,A. The
proof is similar to that of Theorem 1.3, and we adopt the notation therein. On the one
hand,

PX,A = 〈e1, . . . , er | {(wixy)−1w0
xy : (x, y) extremal pair of X, 1 ≤ i ≤ nxy}〉.

On the other hand, since K(A) is a clique complex, for every extremal pair x, y and every
pair of 2-chains (wixy)

−1 and w0
xy, there are two 2-simplices

PK(X),K(A) = 〈e1, . . . , er, exy | {e−1xy w0
xy, (wixy)

−1exy : (x, y) extremal pair of X, 1 ≤ i ≤ nxy}〉.

Call ri = (wixy)
−1 ∗ exy, r0 = e−1xy w

0
xy and replace in PK(X)/K(A) the relator ri by

rir0 = (wixy)
−1w0

xy, and finally eliminate the generator exy together with the relator r0 =

w0
xyexy. �

Theorem 1.7. Let X be a finite poset of height 2, A a spanning subdiagram of H(X). If
K(A) is collapsible, then PX,A ∼AC PK(X).

Proof. By Proposition 1.5 and Theorem 1.6, PX,A ∼AC PK(X)/K(A) ∼AC PK(X). �
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Theorem 1.8. Let P be a group presentation and A be a spanning collapsible subdiagram
of H(XP). Then P ∼AC PXP ,A.

Proof. Apply Theorems 1.3 and 1.7 to the poset XP . �

Theorem 1.8 provides a method to obtain AC-equivalent presentations of a given bal-
anced presentation P by simply choosing an appropriate spanning subdiagram A of H(XP)
and constructing the balanced presentation PXP ,A. This procedure could generate more
tractable AC-equivalent presentations without specifying the actual AC-transformation.
From the proof of Theorem 1.8, the number of movements involved can be estimated as
O(k(n + m)), where n is the number of generators of P, m the number of relators and k
the total relator length. However, it not necessary to explicitly compute them to obtain
the desired AC-equivalence.

In Section 3 this result will be used to investigate potential counterexamples to the
conjecture.

2. Discrete Morse Theory and deformations

Discrete Morse theory was introduced by Forman as a discrete approach to classical
Morse theory. It is built over the notion of a Morse function, which can be thought of as a
specific way of labeling the cells of a regular complex which is almost increasing with respect
the dimension. In this section we show that Morse theory actually provides a method to
‘simplify’ the structure of an n-dimensional complex through an (n+ 1)-deformation.

For a comprehensive exposition on discrete Morse Theory and applications, the reader
may consult Forman’s articles [13, 14], Chari’s article [9], and D. Kozlov’s book [19]. We
briefly recall here the main definitions and results. Let K be a regular CW-complex,
i.e a CW-complex in which for every open cell en, the characteristic map Dn → en is a
homeomorphism. A map f : K → R is a discrete Morse function if for every cell en in
K, the number of faces and cofaces of en for which the value of f does not increase with
dimension is at least one. An n-cell en ∈ Kn is a critical cell of index n if the values of
f in every face and coface of en increase with dimension. A Morse function induces an
ordering in the cells, which determines level subcomplexes of K. For every c ∈ R, the level
subcomplex K(c) of K is the subcomplex of closed cells ē of K such that f(e) ≤ c. Morse
functions serve as a tool to study the homotopy type of K. The following is one of the
main results of discrete Morse theory.

Theorem 2.1. [13] Let K be a regular CW-complex and let f : K → R be discrete Morse
function. Let a < b be real numbers.

(1) If the cells e with f(e) ∈ (a, b] are not critical, then K(b)↘ K(a).
(2) If en is the only critical cell with f(en) ∈ (a, b], then there is a continuous map

ϕ : ∂Dn → K(a) such that K(b) is homotopy equivalent to K(a) ∪ϕ Dn.
(3) K is homotopy equivalent to a CW-complex with exactly one cell of dimension k

for every critical cell of index k.

Every discrete Morse function f has an associated set Mf of pairings of cells, where
{e, e′} ∈Mf if and only if e ≤ e′ and f(e) ≥ f(e′). A pairing M of cells in K is said to be
an acyclic matching if each cell of K is involved in at most one pair of M and the directed
graph HM (X (K)) obtained by reversing the orientation of the edges asociated to matched
pairs of cells in the Hasse diagram of X (K) is acyclic. In [9], Chari proved that Morse
functions on K are in correspondence with acyclic matchings on H(X (K)).
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We formalize the notion and ideas of internal collapses introduced in Kozlov’s book [19,
Ch 11]. Internal collapses are generalizations of the usual collapses that can be thought of
as a simple way of performing an (n+ 1)-deformation from a CW-complex to another one
with a simpler CW-structure. Internal collapses will be the key to a better understanding
of discrete Morse theory and its close connection with simple homotopy theory.

Recall that givenK an n-dimensional CW-complex and ϕ ' ψ : Sn−1 → Kn−1 attaching
maps for the n-cells enϕ and enψ respectively, if Kϕ = K ∪ enϕ and Kψ = K ∪ enψ, then
Kϕ�↘

n+1
Kψ (see [10, Prop. 7.1]). This is the basic idea behind the internal collapses.

Proposition 2.2. Let K be a CW-complex of dimension less than or equal to n. Let
ϕ : ∂Dn → K be the attaching map of an n-cell. If K↘ L, then K ∪ϕDn�↘n+1

L∪ϕ̃Dn,
where ϕ̃ = rϕ and r is the canonical strong deformation retract r : K → L.

Proof. Let j : L→ K be the inclusion. Then jrϕ ∼=H ϕ with a homotopyH : ∂Dn×I → K.
We can perform the following sequence of expansions and collapses

K ∪ϕ Dn↗ (K ∪ϕ Dn) ∪jrϕ Dn ∪H Dn × I↘ K ∪jrϕ Dn↘ L ∪rϕ Dn.

Since the dimension of (K ∪ϕ Dn) ∪jrϕ Dn ∪H Dn+1 is n+ 1, we can conclude that

K ∪ϕ Dn�↘n+1
L ∪ϕ̃ Dn.

�

The next result asserts that one can perform a more general procedure of deformation
than the described in Proposition 2.2.

Lemma 2.3. Let K ∪
N⋃
i=1

ei be a CW-complex where K is a subcomplex of dimension at

most k and such that k ≤ dim(ei) ≤ dim(ei+1) for all i. Denote by ϕj : ∂Dj → K ∪
⋃
i<j

ei

the attaching map of ej. If K↘ L, then

K ∪
N⋃
i=1

ei�↘
n+1

L ∪
N⋃
i=1

ẽi

with n = dim(eN ) and ϕ̃j : ∂Dj → L ∪
⋃
i<j ẽi the attaching map of ẽj defined inductively

by ϕ̃1 = rϕ1 and if j > 1, ϕ̃j = fjϕj, where r : K → L is a strong deformation retraction
and fj : K ∪

⋃
i<j

ei → L ∪
⋃
i<j

ẽi is a deformation.

Proof. We proceed by induction in N . If N = 1, the assertion follows from Proposition 2.2.
Suppose that for every j ≤ N , there exist deformations fj : K∪

⋃
i<j

ei → L∪
⋃
i<j

ẽi, defining

ϕ̃j = fjϕj . By inductive hypothesis, K ∪
N⋃
i=1

ei�↘
n+1

L ∪
N⋃
i=1

ẽi and then, there exists a

deformation fN : K ∪
N⋃
i=1

ei → L∪
N⋃
i=1

ẽi. Define ϕ̃N+1 = fNϕN+1 and take L∪
N+1⋃
i=1

ẽi. We
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will prove that K ∪
N+1⋃
i=1

ei�↘
n+2

L ∪
N+1⋃
i=1

ẽi. In fact,

K ∪
N+1⋃
i=1

ei↗ K ∪
N+1⋃
i=1

ei ∪
N+1⋃
i=1

Di ∪
N+1⋃
i=1

Di × I

with Di attached by the map jifi where ji is a homotopy inverse of fi, and Di × I is
attached by the homotopy Hi between jifi and the identity. Now

K ∪
N+1⋃
i=1

ei ∪
N+1⋃
i=1

Di ∪
N+1⋃
i=1

Di × I↘ K ∪
N+1⋃
i=1

Di↘ L ∪
N+1⋃
i=1

ẽi.

�

Corollary 2.4. If K is an n-dimensional CW-complex and L is a collapsible subcomplex
of K, then K�↘n+1

K/L.

Definition 2.5. If K↘ L, we say that there is a internal collapse from K ∪
n⋃
i=1

ei to

L ∪
n⋃
i=1

ẽi, where the cells ẽi are attached as described in Theorem 2.3.

By applying successively Theorem 2.3, is easy to see that the composition of successive
internal collapses is also an (n+ 1)-deformation.

Theorem 2.6. Let L1 ≤ K1 ≤ L2 ≤ K2 ≤ · · · ≤ LN−1 ≤ KN−1 ≤ LN be a chain of

CW-subcomplexes of LN such that Ki↘ Li for all i. If Li+1 = Ki ∪
ki⋃
j=1

eij, then

LN �↘
n+1

L1 ∪
N⋃
i=1

ki⋃
j=1

ẽij ,

with n = dim(LN ).

We will use discrete Morse theory to simplify the cell structure of a CW-complex without
changing its simple homotopy type. Concretely, any matching in the Hasse diagram of the
face poset of a regular CW-complexK can be interpreted as an ordered sequence of internal
collapses in its cell structure. Given a poset X and an acyclic matching M in H(X), it is
possible to find a linear extension L of the (order induced by the) directed acyclic graph
HM (X) respecting the increasing height of critical points such that if (x, y) ∈ M , the
points x, y follow consecutively in L (see [19, Thm. 11.2.]). We shall call it a preferred
topological sort of HM (X). The notion of level subcomplex can then be reformulated in
terms of the matching. If L : e1 ≤ e2 ≤ · · · ≤ en is a preferred topological sort of HM (X),
then

K(c) =
⋃
ei∈K
i≤c

ēi

that is, K(c) is the subcomplex of K generated by the first i cells according to the total
order L.
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Figure 2. A regular 2-complex K, an acyclic matchingM and a preferred
topological sort L of HM (X (K)).

Figure 3. The level subcomplexes of K associated to the preferred topo-
logical L of Figure 2.

We next state the simple homotopy version of Theorem 2.1, with an explicit construction
of the CW-complex equivalent to the original one, and explicit bounds on the deformation.
Let K be a regular CW-complex, M an acyclic matching in X (K) and L a preferred
topological sort of HM (X (K)). If (ei, ei+1) is a matched pair of cells, then there is a
collapse of the level subcomplexes K(i+ 1)↘ K(i− 1). Denote by KM the CW-complex
obtained after successively performing the internal collapses determined by the matched
pairs of cells.

Theorem 2.7. Let K be a regular CW-complex of dimension n and let M be an acyclic
matching in H(X (K)). Then K�↘n+1

KM .

Proof. It is a direct consequence of Theorem 2.1 and Theorem 2.6. �

Example 2.8. Let K be a regular CW-structure of D1 with two 0-cells e01, e02, three 1-cells
e11, e

1
2, e

1
3 and two 2-cells e21, e22 of Figure 2. LetM be the acyclic matching with paired cells

(e01, e
1
1) and (e12, e

2
1) and L a preferred topological sort of HM (X (K)). Figure 3 describes

the successive level subcomplexes, and Figure 4 depicts the 3-deformation from K to KM ,
where the latter is the regular CW-structure of D1 with one 0-cell, one 1-cell and one 2-cell.

Lemma 2.9. Let K be a regular CW-complex and M be a matching in the subposet of
X (K) of cells of dimension 0 and 1 with only one critical cell of dimension 0. Then M is
acyclic if and only if the subcomplex T =

⋃
e∈M ē of matched cells is a spanning tree in the

1-skeleton of K.
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Figure 4. The 3-deformation from K to KM .

Proof. Observe that the subgraph of H(X (K)) formed by the vertices of height 0 and 1 is
the barycentric subdivision of the 1-skeleton of K. A cycle

e1 ≺ e′1 � e2 ≺ e′2 � . . . en ≺ e′k � e1
in HM (X (K)), with ei of height 0 and e′i of height 1, is in correspondence with a cycle

e1, e2, . . . , ek, e1

in the 1-dimensional subcomplex of K of matched cells. The result follows easily from this
fact. �

Corollary 2.10. Let K be a regular CW-complex of dimension n and M a matching in
the subposet of X (K) of cells of dimension 0 and 1 with only one critical cell of dimension
0. Let T be the associated spanning tree in K1. Then KM is homeomorphic to K/T and
K�↘n+1

K/T .

We are particularly interested in the consequences of Theorem 2.7 when the dimension
of the complex is 2.

Theorem 2.11. Let K be a regular CW-complex of dimension 2 and let M be an acyclic
matching in H(X(K)). Then K�↘3 KM . In particular, PK ∼AC PKM

.

We show now a more concrete and algorithmically manageable version of Theorem 2.11
for group presentations. Recall that if we are given a CW-complex K of dimension 2, the
group presentation PK associated to K is a presentation of the fundamental group of K/T
with T a spanning tree in K1. By Lemma 2.9 and Corollary 2.10, one can describe PK
simply in terms of matchings as the presentation of the fundamental group of KM where
M is an acyclic matching whose matched cells are of dimension 0 and 1, and it has only
one critical cell of dimension 0. We will provide an easy description of the presentation
associated toKM for a general matchingM , which will be more tractable through computer
assistance.

Definition 2.12. Let P be a group presentation and r be a relator of P given by the word
w1x

εw2, where w1 and w2 are words on the generators, the generator x appears neither
in w1 nor in w2, and ε = +1 or −1. Then, the equivalent expression of x inferred by r is
(w−11 w−12 )ε.

Remark 2.13. If P is a group presentation and x is a generator of P such that it appears only
once in a relator r, then P is AC-equivalent to the presentation obtained after eliminating
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the generator x and the relator r and replacing every occurrence of x in the other relators
by its equivalent expression inferred by r. Indeed, suppose r′ is another relator containing
x. By cyclically permuting r′ if necessary, we can assume r′ reads as xεu, with ε = 1 or
−1. We replace r′ by the product sr′ where s is a suitable cyclic permutation of r (or its
inverse) to eliminate this occurrence of x. We iterate this procedure until no occurrence of
x is left.

For instance, if P = 〈x, y, z | xyx−1y−1, y2z3, zxz−1y−1〉, then the equivalent expression
of x inferred by zxz−1y−1 is z−1(z−1y−1)−1, i.e., z−1yz. Thus, P is AC-equivalent to the
presentation P̃ = 〈y, z | z−1yzyz−1y−1zy−1, y2z3〉.

Notice that internal collapses transform regular CW-complexes into combinatorial com-
plexes. Recall that a CW-complex K of dimension 2 is called combinatorial if for each
2-cell e2, its attaching map ϕ : S1 → K(1) sends each open 1-cell of some CW-structure
on S1 either homeomorphically onto an open 1-cell of K or collapses it to a 0-cell of K
(see [16]). Thus, one can think of the attaching map of a 2-cell in a combinatorial com-
plex of dimension 2 simply as the ordered list of oriented 1-cells. Suppose that there is
an internal collapse from the combinatorial 2-complex K ∪

⋃n
i=1 ei to L ∪

⋃n
i=1 ẽi, where

K = L ∪ {a, e}↘e L and the attaching map of e is, say, ax1 . . . xr. We endow the CW-
complex L ∪

⋃n
i=1 ẽi with a combinatorial structure as follows. For every 2-cell containing

edge aε (where, as usual, ε = 1 or −1 and by a−1 we mean the 1-cell a traversed with
the opposite orientation), modify its attaching map by replacing each occurrence of aε by
(x1 . . . xr)

−ε and leaving the other cells unchanged. Therefore, after performing a sequence
of internal collapses to a regular complex we obtain a complex with a natural combinatorial
structure.

Definition 2.14. Let K be a regular CW-complex of dimension 2. Let M be an acyclic
matching inH(X (K)) such that there is only one critical cell of dimension 0. Denote byM0

the subset of matched pairs of cells of dimension 0 and 1, and byMr = {(x1, y1), (x2, y2), . . . ,
(xr, yr)} the subset of matched pairs of cells of dimension 1 and 2. Let L be a pre-
ferred topological sort in HM (X (K)). Sort Mr respecting the total order L, that is,
Mr : y1 < x1 < y2 < x2 < · · · < yr < xr, with (xi, yi) ∈ M . The group presentation
QX (K),M associated to the matching M is the presentation Qr defined by the following
iterative procedure:

• Q0 is the standard presentation PK constructed using the spanning tree T induced
by M0 (see Lemma 2.9). The generators of Q0 are the unmatched 1-cells of K ac-
cording to the matchingM0, and its relators are the words induced by the attaching
maps of the 2-cells of K.
• For 0 ≤ i < r, let Qi+1 be the presentation obtained from Qi after removing the
relator associated to yr−i and the generator xr−i, and replacing every occurrence
of the generator xr−i in the remaining relators by the equivalent expression of xr−i
inferred by the relator associated to yr−i.

It follows that the group presentation QX (K),M associated to a matchingM in H(X (K))
is AC-equivalent to PK .

Theorem 2.15. Let K be a regular CW-complex of dimension 2, and let M be an acyclic
matching in H(X (K)) with only one critical cell of dimension 0. Then, QX (K),M = PKM

for a suitable choice of orientations and basepoints in KM .
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Proof. Let r > 0. Notice that the combinatorial operation made to get Q1 from Q0

parallels exactly the geometric description of an internal collapse provided in the paragraph
following Remark 2.13, where the collapse is the one indicated by the pair (xr, yr). Since
the matching M is acyclic, for every 0 ≤ i < r the relator corresponding to cell yr−i in
Qi contains a unique occurrence of generator xr−i. Therefore, presentations Qi and Qi+1

are AC-equivalent and the sequence of AC-transformation employed to get from one to the
other matches perfectly the corresponding internal collapse in complex K. Denote by KMr

the complex obtained from K after performing the internal collapses induced by the pairs
in Mr. Since KM = KMr/T , it follows that Qr = QX (K),M is the standard presentation
associated to KM for the right choice of orientations and basepoints. �

By Theorem 2.11, any regular CW-complex K 3-deforms to KM . Thus, QX (K),M is
another representative of the AC-class of PK .

Corollary 2.16. Let K be a regular CW-complex of dimension 2, and let M be an acyclic
matching in H(X (K)) with only one critical cell of dimension 0. Then, QX (K),M ∼AC PK .
Example 2.17 (The Triangle). Let T be the regular CW-complex with oriented cells of
Figure 5, and M be the acyclic matching in H(X (T )) of Figure 6.

Figure 5. The Triangle.

• • • • • • ◦e

◦x1 •x2 •x3 •x4 •x5 •x6 •x7 •x8 •x9

◦2 •1 •0

Figure 6. An acyclic matching M in H(X (T )).
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The CW-complex TM has only one 0-cell, one 1-cell x1 and one 2-cell ẽ. However, we
do not know beforehand what the attaching map of ẽ looks like. We will prove that ẽ has
an attaching map homotopic to x−11 and so TM �↘3 D2. We take a preferred topological
sort of HM (X (T )) as in Figure 7.

•9 •7 •11 •13 •15 •17 ◦18

◦4

4466

•2

OO
22

•14
vv

22

•10

OO <<

(( •8

66

((

kk

•5

OO

•12

hh

++ •16

OO

(( •18

bb

((

◦1

hh aa OO << 33 11

•3

OO

++

hhll 66 33

•6

OO 66kk

""

hh

Figure 7. Preferred topological sort of HM (T ).

The attaching map of e in T can be described as the ordered list of 1-cells x9x8x3.
We carry out explicitly the recursive process described in Theorem 2.15 to obtain the
attaching map of ẽ in TM . By performing the internal collapses indicated by the matched
pairs (17,18), (15,16) and (13,14) we get respectively

x9 = x2x
−1
5 , x8 = x6x

−1
1 , and x3 = x7x4.

From the sequence of internal collapses induced by pairs (11,12), (9,10) and (7,8) we obtain
respectively

x7 = x1x
−1
4 , x4 = x5x

−1
2 , and x5 = x6x

−1
1 ,

so that x4 = x6x
−1
1 x−12 and x7 = x1x2x1x

−1
6 . Thus, the attaching map of ẽ in the com-

binatorial complex which results from performing the internal collapses that correspond
to cells of dimension 1 and 2, turns out to be x2x6x−11 x6x

−1
1 x1x2x1x

−1
6 x6x

−1
1 x−12 . The

movements induced by the pairs (5,6) and (2,3) amount to the identities

x6 = 1 and x2 = 1.

Finally the attaching map of ẽ in TM is x−1x−11 x1x1x
−1
1 which is easily seen to be homotopic

to x−11 .

Theorem 2.18. Let P be a balanced presentation of a group. LetM be an acyclic matching
in H(XP) with only one critical cell of dimension 0. Then P ∼AC QXP ,M .

Proof. Apply Corollary 2.16 to K ′P . �

Remark 2.19. Given P a presentation and M a matching in H(XP) with only one crit-
ical 0-cell, we proved that P ∼AC QXP ,M . We will estimate the (sufficient) number of
AC-transformations to obtain QXP ,M from P Theorem 2.18 follows from the chain of
equivalences:

P ∼AC PKP ∼AC PK′P ∼AC P(K′P )M = QXP ,M .
Let n be the number of generators of P, m the number of relators and k the total relator
length. The equivalences P ∼AC PKP and PKP ∼AC PK′P can be achieved in O(n+m) and
O(k) AC-transformations respectively. Now, by Theorem 2.11, K ′P �↘3 (K ′P)M . Thus,
the estimated number of AC-transformations required to obtain P(K′P )M from PK′P has
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the order of the number of elementary expansions and collapses needed to deform K ′P into
(K ′P)M . This is bounded by the square of the number of cells of K ′P , which is proportional
to k.

3. Applications to potential counterexamples

Over the last fifty years a list of examples of balanced presentations of the trivial group
which are not known to be trivializable via Andrews-Curtis transformations has been
compiled. They serve as potential counterexamples to disprove the conjecture (see [17]).

The list of the potential counterexamples that we are going to consider is shown below.
See [17] for an extended list and [26] for a recent overview.

(1) AKn = 〈x, y | xyx = yxy, xn = yn+1〉, with n ≥ 2. Akbulut and Kirby [2].
(2) R = 〈x, y, z | z−1yz = y2, x−1zx = z2, y−1xy = x2〉. Rapaport [23].
(3) Gn,m,p,q = 〈x, y | x = [xm, yn], y = [xp, yq]〉, with n,m, p, q ∈ Z. Gordon [8].

We expose some practical results achieved after implementing the algorithms developed
in Sections 1 and 2 in the SAGE platform [25]. The proof of these results, as well as the
Python code of the implementation can be found in [12].

Given P a potential counterexample, the general outline to prove that P ∼AC 〈 | 〉 is to
find an appropriated matching or subdiagram ofH(XP) and then obtain a new presentation
in the same AC-class, but computationally tractable.

We say that a presentation is greedily AC-trivializable if the (greedy) algorithm of sim-
plification of presentations described in [15] (and also implemented in SAGE) can transform
it into 〈 | 〉. This procedure was originally thought for the Tietze-simplification of presen-
tations and it consists in a loop of two phases. The search phase attempts to reduce the
length-relator by replacing long substrings of relators by shorter equivalent ones. That is,
if there are relators r1 and r2 such that a suitable cyclic permutation of r1 reads uv and a
cyclic permutation of r2, or its inverse reads as wv, and the length of v is greater than the
length of w; then r2 is replaced by wu−1. The elimination phase tries to eliminate gener-
ators which occur only once in some relator. The previous algorithm actually makes only
AC-transformations if we start from a balanced presentation of the trivial group. In fact,
there is only one situation in which the procedure makes a transformation not included
in (1)-(4). Suppose that the presentation P has a relator ri which is equal to another
relator rj . Then, this algorithm replaces relator ri by a 1, and then eliminates the latter 1.
This transformation changes the deficiency of the presentation and does not preserve the
(simple) homotopy type of the associated complex KP . However, the previous situation
is not possible if P is a balanced presentation of the trivial group, since if P has (after
possibly a sequence of AC-transformations) one relator equal to another, then it is in the
same AC-class as a presentation with a relator equal to 1. Thus, KP has non-trivial second
homology group, which is not possible.

We present the following results.

• The presentation AK2 = 〈x, y | xyx = yxy, x2 = y3〉 satisfies the Andrews-Curtis
conjecture.

We found a collapsible subdiagram A in H(XAK2) such that PXAK2
,A is greed-

ily AC-trivializable. Since AK2 ∼AC PXAK2
,A, this proves that AK2 satisfies the
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Andrews-Curtis conjecture. This fact was first proved in [20] using genetic algo-
rithms. For n = 1, AK1 can be trivially AC-transformed into 〈 | 〉; for n > 2, the
question remains open.
• The presentation R posed by Rapaport can be AC-transformed into a presentation
with 2 generators and 2, and quite reduced total length-relator.

We found a collapsible subdiagram A in H(XR) for which PXR,A can be greedily
transformed into

R̃ = 〈x, y | x−1yx−2y−1xyx2y−1x−1yx2y−1, y−1x−1yx2y−2x−1yx2yx−2y−1x〉,

whose relators have total length equal to 31. R is the only potential counterexam-
ple with 3 generators and relators. This transformation may be useful given the
extensive study of the class of ‘2-relators’ presentations (see [6, 18, 21, 22]).
• The presentations of the family

G1,1,k,−1 = 〈x, y | x = [x−1, y−1], y = [x−k, y]〉, with 1 < k < 100,

satisfies the Andrews-Curtis conjecture.
It is not known in general if the family of presentations Gn,m,p,q are AC-trivializable.

The best previous result was obtained in [6], where the authors proved that the
presentations in this sequence whose total length-relator is up to 14 are can be
transformed into 〈 | 〉 with AC-moves. We focused our attention in the subfamily

G1,1,k,−1 = 〈x, y | x = [x−1, y−1], y = [x−k, y]〉.

If k is even, an easy computation by hand reveals that G1,1,k,−1 ∼AC 〈 | 〉. Never-
theless, if k is odd, the question was open. For each 1 < k < 100, k odd, we found
an acyclic matching Mk in H(XG1,1,k,−1

) such that QXG1,1,k,−1
,Mk

can be reduced to
〈 | 〉 after applying the greedy algorithm of trivialization.
• Recently, Barmak proved that a strong formulation of the Andrews-Curtis con-
jecture is false [4]. He exhibited an example of two presentations which are not
Q∗-equivalents even though their standard complexes have the same simple homo-
topy type. More specifically, he proved that

B = 〈x, y | [x, y], 1〉

cannot be transformed into

B′ = 〈x, y | [x, [x, y−1]]2y[y−1, x]y−1, [x, [[y−1, x], x]]〉

using operations (1)-(3) and (5), but KB�↘ KB′ . He asked whether these presen-
tations are Q∗∗-equivalent or not (being a potential counterexample to the gener-
alized Andrews-Curtis conjecture, see [16, Section 4.1]).

We proved that B and B′ are AC-equivalent and thus, Q∗∗-equivalent. Con-
cretely, we found an acyclic matching M in H(XB′) with only one critical cell in
dimension 0 and then greedily simplified QXP′ ,M into P using operations (1)-(4).
Therefore, this counterexample to the strong formulation of the AC-conjecture is
not a counterexample to the generalized Andrews-Curtis conjecture.

Acknowledgements. The author is grateful to Gabriel Minian for many useful discus-
sions and suggestions during the preparation of this article.
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