Coloquio Departamento de Matemática, FCEyN, UBA
XIMENA FERNANDEZ
Trabajo en colaboracion con
W. REISE (Paris-Saclay), M. DOMINGUEZ, M. BEGUERISSE-DIAZ (Spotify) & H. A. HARRINGTON (Oxford).
Martin et al. Topology of cyclo-octane energy landscape. J Chem Phys. 2010
Barbensi et al. A topological eslection of folding Pathways from native states of knotted proteins. Symm. 2021
Gardner et al. Toroidal topology of population activity in grid cells. Nature. 2022
Carlsson, Memoli. Characterization, Stability and Convergence of Hierarchical Clustering Methods. JMLR (2010)
Chazal, Guibas, Oudot, Skraba. Persistence-Based Clustering in Riemannian Manifolds. Journal of the ACM (2011)
McInnes, Healy, Melville. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction. Journal of the Open Source Software (2018)
Singh, Memoli, Carlsson. Topological Methods for the Analysis of High Dimensional Data Sets and 3D Object Recognition (Mapper). (2007)
Zomorodian, Carlsson. Computing Persistent Homology Discrete and Computational Geometry (2005)
Input dataset $X$.
Source: Ali et.al. (2023)
Gardner et al. 'Toroidal topology of population activity in grid cells'. Nature. (2022)
L. Polterovich et.al. 'Topological persistence in geometry and analysis'. American Mathematical Society. (2020)
E. Shelukhin. 'On the Hofer-Zehnder conjecture'.
Annals of Mathematics. (2022)
Gardner et al. 'Toroidal topology of population activity in grid cells'. Nature. (2022)
Reise, Fernandez, Dominguez, Harrington, Beguerisse-Diaz. 'Topological fingerprints for audio identification'. SIAM Journal of Data Science (accepted) (2023)
L. Polterovich et.al. 'Topological persistence in geometry and analysis'. American Mathematical Society. (2020)
E. Shelukhin. 'On the Hofer-Zehnder conjecture'.
Annals of Mathematics. (2022)
Source: Music Obfuscator by Ben Grosser (2015)
Given two audio recordings, identify whether they correspond to the same audio content .
Given two audio recordings, identify whether they correspond to the same audio content .
Case study: Shazam (2003)
Case study: Shazam (2003)
Case study: Shazam (2003)
Case study: Shazam (2003)
Case study: Shazam (2003)
Case study: Shazam (2003)
Case study: Shazam
Let $\mathcal S$ denote the mel-spectrogram of an audio track $s:[0,T]\to \mathbb{R}$.
Let $\mathcal S$ denote the mel-spectrogram of an audio track $s:[0,T]\to \mathbb{R}$.
Let $\mathcal S$ denote the mel-spectrogram of an audio track $s:[0,T]\to \mathbb{R}$.
$~~~~~~~~~~~~t_0~~~~~~~~~~~~~~~~~~~~~~~t_1~~~~~~~~~~~~~~~~~~~~t_2~~~~~~~~~~~~~~~~~~~~~t_3~~~~~~~~~~~~~~~~~~~~~~t_4~~~~~~~~~~~~~~~~~~~~~t_5 \dots$
$~~~~$
$~~~~~~~~~~~~~~~~t_0~~~~~~~~~~~~~~~~t_1~~~~~~~~~~~~~~~~t_2~~~~~~~~~~~~~~~t_3~~~~~~~~~~~~~~~t_4~~\dots~~~~~~~~~~~~~~~~~~t'_0~~~~~~~~~~~~~~~~t'_1~~~~~~~~~~~~~~~~t'_2~~~~~~~~~~~~~~~~t'_3~~~~~~~~~~~~~~~t'_4~~\dots$
For every homological dimension $d=0,1$, the $d$-Betti distance matrix $M_d$ between $s$ and $s'$ is defined as \[ (M_d)_{i,j} = \Vert \beta_{i,d} - \beta'_{j,d} \Vert_{L^1}. \]
We summarize the distance between every pair of windows $W_i$ and $W_j'$ as \[ C_{i,j} = \lambda (M_0)_{i,j} + (1-\lambda) (M_1)_{i,j} \] for a parameter $0\leq \lambda\leq 1$.
For $m\geq 1$, compute $\bar t'_{j_i} = \mathrm{median} \{t_{j_{i-m}},\dots, t_{j_{i-1}}, t_{j_i}, t_{j_{i+1}}, \dots, t_{j_{i+m}}\}$, the moving median at $t_{j_i}$. Consider $\bar P=\{( t_{i}, \bar t_{j_i}'): i =1,\dots,k\}$.
For $m\geq 1$, compute $\bar t'_{j_i} = \mathrm{median} \{t_{j_{i-m}}, t_{j_{i-m+1}}, \dots, t_{j_{i-1}}, t_{j_i}\}$, the moving median at $t_{j_i}$. Consider $\bar P=\{( t_{i}, \bar t_{j_i}'): i =1,\dots,k\}$.
We assess the functional increasing dependency of the points in $P$ as \[ \rho_{\bar P} = \mathrm{Pearson}\{(t_i), (\bar{t}'_{j_i})\}. \]
For $m\geq 1$, compute $\bar t'_{j_i} = \mathrm{median} \{t_{j_{i-m}}, t_{j_{i-m+1}}, \dots, t_{j_{i-1}}, t_{j_i}\}$, the moving median at $t_{j_i}$. Consider $\bar P=\{( t_{i}, \bar t_{j_i}'): i =1,\dots,k\}$.
We assess the functional increasing dependency of the points in $P$ as \[ \rho_{\bar P} = \mathrm{Pearson}\{(t_i), (\bar{t}'_{j_i})\}. \]
Music Obfuscator by Ben Grosser
Song | Shazam (60 sec) |
---|---|
Smells Like Teen Spirit | No |
Get Lucky | No |
Giant Steps | No |
Stairway to Heaven | Yes |
Headlines | Yes |
Blue in Green | No |
You’re Gonna Leave | No |
Blue Ocean Floor | No |
Music Obfuscator by Ben Grosser
Song | Shazam (60 sec) | Correlation (60-30 sec) |
---|---|---|
Smells Like Teen Spirit | No | 0.83208 |
Get Lucky | No | 0.99906 |
Giant Steps | No | 0.83904 |
Stairway to Heaven | Yes | 0.88533 |
Headlines | Yes | 0.91173 |
Blue in Green | No | 0.89276 |
You’re Gonna Leave | No | 0.71766 |
Blue Ocean Floor | Yes | 0.51332 |
Spotify Database + PySOX Transformer
Obfuscation type | Degree |
---|---|
Low Pass Filter | 200, 400, 800, 1600, 2000 |
High Pass Filter | 50, 100, 200, 400, 800, 1200 |
White Noise | 0.05, 0.10, 1.20, 0.40 |
Pink Noise | 0.05, 0.10, 1.20, 0.40 |
Reverberation | 25, 50, 75, 100 |
Tempo | 0.50, 0.80, 1.1 1.2, 1.50, 2.00 |
Pitch | -8, -4, -2, -1, 1, 2, 4, 8 |
Given an audio track $s$ and a database $\mathcal D$, identify an element $s'\in \mathcal D$ with the same audio content as $s$.
Given an audio track $s$ and a database $\mathcal D$, identify an element $s'\in \mathcal D$ with the same audio content as $s$.
Given an audio track $s$ and a database $\mathcal D$, identify an element $s'\in \mathcal D$ with the same audio content as $s$.
W. Reise, X. Fernandez, M. Dominguez, H.A. Harrington, M. Beguerisse-Diaz. Topological fingerprints for audio identification (2023) SIAM Journal of Data Science (accepted) arXiv:2309.03516