XIMENA FERNANDEZ
TOPOLOGICAL DATA ANALYSIS
Let X be a topological space and let Xn={x1,...,xn} be a finite sample of X.
Inference problem: How to estimate topological properties of X from Xn?
Let X be a topological space and let Xn={x1,...,xn} be a finite sample of X.
Inference problem: How to estimate topological properties of X from Xn?
Let X be a topological space and let Xn={x1,...,xn} be a finite sample of X.
Inference problem: How to estimate topological properties of X from Xn?
Evolving thickenings
Let X be a topological space and let Xn={x1,...,xn} be a finite sample of X.
Inference problem: How to estimate topological properties of X from Xn?
Evolving thickenings
Sequence of combinatorial spaces
ϵ=0 ϵ=0.7 ϵ=1 ϵ=2
Let X be a topological space and let Xn={x1,...,xn} be a finite sample of X.
Inference problem: How to estimate topological properties of X from Xn?
Sequence of combinatorial spaces
Persistent Homology
Input dataset X.
Source: B. Rieck
Input dataset X.
Source: B. Rieck
Input dataset X.
Source: B. Rieck
Input dataset X.
Source: B. Rieck
Problem: Persistent homology is not robust in general to noise and outliers, and it might be very sensitive to the embedding in the ambient space.
Let Xn={x1,...,xn}⊆RD data points.
Assume that:
Goal: Infer ′H∙(M,f)′
X. Fernandez, E. Borghini, G. Mindlin, P. Groisman. 'Intrinsic persistent-homology via density-based metric learning'. Journal of Machine Learning Research. 24 (2023) 1-42.
The path taken by a ray between two given points is the path that can be traversed in the least time.
That is, it is the extreme of the functional γ↦∫10η(γt)||˙γt||dt with η is the refraction index.
UNDERLYING SPACE
M⊆RD manifold, f:M→R>0 density.
For q>0, deformed Riemannian distance in M df,q(x,y)=inf
UNDERLYING SPACE
\mathcal M \subseteq \mathbb{R}^D manifold, f:\mathcal{M}\to \mathbb{R}_{>0} density.
For q>0, deformed Riemannian distance in \mathcal{M} d_{f,q}(x,y) = \inf_{\gamma:x\sim y} \int_{\gamma}\frac{1}{f(\gamma_t)^{q}}||\dot \gamma_t||dt.
DATA
\mathbb{X}_n = \{x_1,...,x_n\}\subseteq \mathbb{R}^D sample.
For p> 1, Fermat distance in \mathbb{X}_n d_{\mathbb{X}_n, p}(x,y) = \inf_{\gamma:x\sim y} \sum_{i=0}^{r}|x_{i+1}-x_i|^{p}.
Theorem (F., Borghini, Mindlin, Groisman)
\big(\mathbb{X}_n, C(n,p,d) d_{\mathbb{X}_n,p}\big)\xrightarrow[n\to \infty]{GH}\big(\mathcal{M}, d_{f,q}\big) ~~~ \text{ for } q = (p-1)/d
Theorem (F., Borghini, Mindlin, Groisman)
\big(\mathbb{X}_n, C(n,p,d) d_{\mathbb{X}_n,p}\big)\xrightarrow[n\to \infty]{GH}\big(\mathcal{M}, d_{f,q}\big) ~~~ \text{ for } q = (p-1)/d
Let \mathcal{M} be a closed smooth d-dimensional Riemannian manifold embedded in \mathbb{R}^D. Let \mathbb X_n\subseteq \mathcal{M} be a set of n independent sample points with common smooth density f:\mathcal{M}\to \mathbb{R}_{>0}.
Given p>1 and q=(p-1)/d, there exists a constant \mu = \mu(p,d) such that for every \lambda \in \big((p-1)/pd, 1/d\big) and \varepsilon>0 there exist \theta>0 satisfying \mathbb{P}\left( d_{GH}\left(\big(\mathcal{M}, d_{f,q}\big), \big(\mathbb{X}_n, {\scriptstyle \frac{n^{q}}{\mu}} d_{\mathbb{X}_n, p}\big)\right) > \varepsilon \right) \leq \exp{\left(-\theta n^{(1 - \lambda d) /(d+2p)}\right)} for n large enough.
~Theorem (F., Borghini, Mindlin, Groisman)
\big(\mathbb{X}_n, C(n,p,d) d_{\mathbb{X}_n,p}\big)\xrightarrow[n\to \infty]{GH}\big(\mathcal{M}, d_{f,q}\big) ~~~ \text{ for } q = (p-1)/d
Theorem (F., Borghini, Mindlin, Groisman)
\mathrm{dgm}\Big(\big(\mathbb{X}_n, C(n,p,d) d_{\mathbb{X}_n,p}\big)\Big)\xrightarrow[n\to \infty]{B}\mathrm{dgm}\Big(\big(\mathcal{M}, d_{f,q}\big)\Big) ~~~ \text{ for } q = (p-1)/d
Prop (F., Borghini, Mindlin, Groisman, 2023)
Let \mathbb{X}_n be a sample of \mathcal{M} and let Y\subseteq \mathbb{R}^D\smallsetminus \mathcal{M} be a finite set of outliers. Let \delta = \displaystyle \min\Big\{\min_{y\in Y} d_E(y, Y\smallsetminus \{y\}), ~d_E(\mathbb X_n, Y)\Big\}.
Then, for all k>0 and p>1,
\mathrm{dgm}_k(\mathrm{Rips}_{<\delta^p}(\mathbb{X}_n \cup Y, d_{\mathbb{X}_n\cup Y, p})) = \mathrm{dgm}_k(\mathrm{Rips}_{<\delta^p}(\mathbb{X}_n, d_{\mathbb{X}_n, p}))
where \mathrm{Rips}_{<\delta^p} stands for the Rips filtration up to parameter \delta^{p} and \mathrm{dgm}_k for the persistent homology of deg k.
X. Fernandez, E. Borghini, G. Mindlin, P. Groisman. 'Intrinsic persistent-homology via density-based metric learning'. Journal of Machine Learning Research. 24 (2023) 1-42.
Anomaly detection en ECG
Delay embedding:
Given T the time delay and D the embedding dimension,
\{\big(\varphi(t), \varphi(t+T), \varphi(t+2 T) \dots, \varphi(t+(D-1)T)\big): t\in \mathbb R\}\subseteq \mathbb{R}^D
Anomaly detection in ECG
Delay embedding:
Given T the time delay and D the embedding dimension,
\{\big(\varphi(t), \varphi(t+T), \varphi(t+2 T) \dots, \varphi(t+(D-1)T)\big): t\in \mathbb R\}\subseteq \mathbb{R}^D
Anomaly detection in ECG
Anomaly detection in ECG
Pattern detection in birdsongs
Source data: Private experiments. Laboratory of Dynamical Systems, University of Buenos Aires.
Pattern detection in birdsongs
Pattern detection in birdsongs
Pattern detection in birdsongs
Pattern detection in birdsongs
Epileptic seizure detection
~~~~~X. Fernandez, D. Mateos. Topological biomarkers for real-time epileptic seizures. Preprint arXiv:2211.02523 (2024)
Epileptic seizure detection
Problem: Given a physiological recording of the brain activity, algorithmically detect in real time epileptic seizures.
~~~~~X. Fernandez, D. Mateos. Topological biomarkers for real-time epileptic seizures. Preprint arXiv:2211.02523 (2024)
Epileptic seizure detection
Epileptic seizure detection
Epileptic seizure detection
Epileptic seizure detection
Epileptic seizure detection
EEG (CH-MIT Database)Research collaboration with Spotify
W. Reise, X. Fernandez, M. Dominguez, H.A. Harrington, M. Beguerisse-Diaz. Topological fingerprints for audio identification. SIAM Journal on Mathematics of Data Science Vol. 6, Iss. 3 (2024)
Research collaboration with Spotify
Problem: Given two audio tracks, identify whether they correspond to the same audio content.
W. Reise, X. Fernandez, M. Dominguez, H.A. Harrington, M. Beguerisse-Diaz. Topological fingerprints for audio identification. SIAM Journal on Mathematics of Data Science Vol. 6, Iss. 3 (2024)
Research collaboration with Spotify
Research collaboration with Spotify
~~~~~~~Research collaboration with Spotify
Research collaboration with Spotify
Research collaboration with Spotify
Given s an audio track, we associate topological fingerprints via local Betti curves.
~
~
~
~
~
~~
~
~
~
~
~
~~~~~~~~~~~t_0~~~~~~~~~~~~~~~~~t_1~~~~~~~~~~~~~~~~~~t_2~~~~~~~~~~~~~~~~~t_3~~~~~~~~~~~~~~~~~t_4~~~~~~\dots~~~~~~~~~~~t'_0~~~~~~~~~~~~~~~~~t'_1~~~~~~~~~~~~~~~~~t'_2~~~~~~~~~~~~~~~~t'_3~~~~~~~~~~~~~~~~t'_4~~\dots
Correlation: 'Smells like teen spirit'. (30sec-30sec): 0.9896
Research collaboration with Spotify
Kuramoto models and synchronization
Kuramoto model
\frac{d\theta_i}{dt} = \omega_i + \sum_{j=1}^{N} \omega_{ij}\sin(\theta_j - \theta_i), \quad i = 1, 2, \dots, N~~~~~~where:
Kuramoto models and synchronization
Conjecture: The Kuramoto model on random geometric graphs over spaces with non-trivial homology does not synchronize.
Dependence on initial conditions
Case study: Driven double gyre.Dependence on initial conditions
Dependence on initial conditions
New topological invariants of data
Problem: Homology may fall short in capturing topological aspects of data.
New topological invariants of data
Problem: Homology may fall short in capturing topological aspects of data.
Related to: X. Fernandez. Morse theory for group presentations. Transactions of the AMS. (2024)
~~ Lorenz attractor~~~~~~~~~~~~~~~~~~~Chua attractor
THANKS!