XIMENA FERNANDEZ
Durham University
UK CENTRE FOR TOPOLOGICAL DATA ANALYSIS
GETCO 2022
Joint work with Kevin Piterman
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
Theorem (Zomorodian & Carlsson, 2005). For every degree d≥0, there is a decomposition Md=(n⨁s=1Σαsk[x])⊕(m⨁l=1Σγlk[x]/xnlk[x]) where αs,γj∈Z, nl<nl+1 y Σα denotes an α-shift in the degree.
We can represent Md as a set of intervals (αs,+∞) and (γl,γl+nl), also known as barcode.
We can represent Md as a set of intervals (αs,+∞) and (γl,γl+nl), also known as barcode.
S2∨S1∨S1
S2∨S1∨S1
S2∨S1∨S1
S1×S1 vs S2∨S1∨S1
S2∨S1∨S1 vs S1×S1
Vietoris–Rips filtration
Persistent homology
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16, x−110x9x4,x−19x8,x−18x7x6,x−17⟩
where PKN=⟨x1,x2,…,xn | r1,r2,…,rm⟩ with XN={x1,x2,…xn} the set of generators induced by the 1-cells in KN not in T, and RN={r1,r2,…,rm} the set of relators associated to the attaching maps of the 2-cells in KN.
For 0≤j≤N, PKj=⟨xj1,xj2,…,xjnj | rj1,rj2,…,rjmj⟩ with Xj={xj1,xj2,…,xjnj} the set of the 1-cells in Kj not in T and Rj={rj1,rj2,…,rjmj} the set of relators associated to the attaching maps of the 2-cells in Kj.
The homomorphisms (ij)∗ are induced by the inclusions Xj⊆Xj+1, Rj⊆Rj+1.
Problem: In practice, the presentations PKj may be huge.
∙ Ximena Fernandez, Combinatorial methods and algorithms in low-dimensional topology and the Andrews-Curtis conjecture. PhD thesis, University of Buenos Aires (2017)
∙ Ximena Fernandez, Morse theory for group presentations (2019) arXiv:1912.00115
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
For every cell en in K, |{en≻en−1:f(en)≤f(en−1)} +|{en≺en+1:f(en)≥f(en+1)}|≤1.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
An n-cell en∈K is a critical cell of index n if the values of f in every face and coface of en increase with dimension.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Theorem [Forman, '98]. K is homotopy equivalent to a CW-complex KM with exactly one cell of dimension k for every critical cell of index k. In particular, π1(K)≅π1(KM).
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Theorem [Forman, '98]. K is homotopy equivalent to a CW-complex KM with exactly one cell of dimension k for every critical cell of index k. In particular, π1(K)≅π1(KM).
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en≃L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
[Kozlov, D. Organized collapse: an introduction to discrete Morse theory. Graduate Studies in Mathematics, 207. Amer. Math. Soc., Providence, RI, 2020.]
Theorem: Let K be a regular CW-complex and let f:K→R be discrete Morse function. Then, f induces a sequence of internal collapses given by a filtration of K ∅=K−1⊆L0⊆K0⊆L1⊆K1⋯⊆LN⊆KN=K such that Kj↘Lj for all 1≤j≤N and Lj=Kj−1∪dj⋃i=1eji with {eji:0≤j≤N,1≤i≤dj} the set of critical cells of f. Moreover, K≃L0∪N⋃j=1dj⋃i=1˜eji=KM. Here, the attaching maps of the cells ˜eji can be explicitly reconstructed from the internal collapses.*
∗ X. Fernandez, Combinatorial methods and algorithms in low-dimensional topology and the Andrews-Curtis conjecture. PhD thesis, University of Buenos Aires (2017)
∗ X. Fernandez, Morse theory for group presentations (2019) arXiv:1912.00115
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16, x−110x9x4,x−19x8,x−18x7x6,x−17⟩
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16, x−110x9x4,x−19x8,x−18x7x6,x−17⟩
K+f:K→R Morse function
PKM=⟨x4,x6 | x6x4x−16x−14⟩
Given K a regular CW-complex and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
O(M2) with M = |2-cells of K|
ximenafernandez/Finite-Topological-Spaces (SAGE)
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω0(x13,x−113x12x−14)=x12x−14
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω0(x13,x−113x12x−14)=x12x−14
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 | x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω1(x12,x−112x12)=x11
Q2=⟨x4,x6,x7,x8,x9,x10,x11 | x11x−14,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 | x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 | x11x−14,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q3=⟨x4,x6,x7,x8,x9,x10 | x10x−16x−14,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q4=⟨x4,x6,x7,x8,x9 | x9x4x−16x−14,x−19x8,x−18x7x6,x−17⟩
Q5=⟨x4,x6,x7,x8 | x8x4x−16x−14,x−18x7x6,x−17⟩
Q6=⟨x4,x6,x7 | x7x6x4x−16x−14,x−17⟩
Q7=⟨x4,x6 | x6x4x−16x−14⟩
Definition [F.2017] Let K be a regular CW-complex. Let f:K→R be a Morse function
with only one critical cell of dimension 0.
Label M(2)={(x1,e1),…,(xm,em)} the subset of induced matched pairs of cells of dimension 1 and 2.
The Morse presentation QK,f is the presentation Qm defined by the following iterative procedure:
∙ Q0 is the standard presentation PK constructed using
the spanning tree T induced by M(1), the induced matched pairs of cells of dimension 0 and 1.
∙ For 0≤i<m, let Qi+1 be the presentation obtained from Qi after removing the relator ri associated to ei and the generator xi, and applying the rewriting rule* ω(xi,ri) on every occurrence of the generator xi in the rest of the relators.
* Given a relator r=w1xϵw2 and a generator x that appears neither in
w1 nor in w2 and ϵ=±1, the equivalent expression ω(x,r) of x induced by r
is defined as (w−11w−12)ϵ.
Theorem [F.2017] QK,f is the standard presentation PKM.
∙ Ximena Fernandez and Kevin Piterman, The persistent fundamental group of point clouds (2022) (In preparation)
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle~~~~~~P_{(K_2)_\mathcal M} =\langle x_4, x_6, x_7~ | ~ x_7x_6 x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle~~~~~~P_{(K_2)_\mathcal M} =\langle x_4, x_6, x_7~ | ~ x_7x_6 x_4x_6^{-1}x_4^{-1}\rangle ~~~~~~ P_{(K_3)_\mathcal M} = \langle x_4, x_6~ | ~ x_6 x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
Theorem [F. Piterman 2022]. Let K be a regular CW-complex and let \phi:K\to \mathbb{R} be a filtration such that K_{\min \phi} is connected and contains all the vertices of K.
Let f:K\to \mathbb{R} be a Morse function with a single critical cell of dimension 0 such that the induced spanning tree is included in K_{\min \phi}.
Define a total ordering \{(x_1, e_1), (x_2, e_2), \dots, (x_m, e_m)\} on the set M^{(2)} of induced matched pairs of cells of dimension 1 and 2, such that if \phi(e_i)\leq \phi(e_j) then i\leq j.
Let \mathcal Q_0, \mathcal Q_1, \dots, \mathcal Q_m be the family of presentations associated to (K,f), with generators X(\mathcal Q_i) and relators R(\mathcal Q_i) for 1\leq i \leq m.
\bullet~~~ Given
\alpha\in \mathbb{R}, define
i(\alpha) := \begin{cases}
0 & \text{if } \alpha <\phi(e_i)\text{ for all }1\leq i \leq n\\
\max\{1\leq i\leq n \colon\phi(e_i)\leq \alpha\}&\text{otherwise.}\\\end{cases}
Then, \mathcal P_{({K_\alpha})_{\mathcal M}} = \langle X(\mathcal Q_{i(\alpha)})\cap K_\alpha ~ | ~ R(\mathcal Q_{i(\alpha)})\cap K_\alpha \rangle.
Theorem [F. Piterman 2022] (cont.)
For 1\leq i \leq m, denote by \Omega_i\colon G(\mathcal Q_{i-1}) \to G(\mathcal Q_{i}) the homomorphism induced by the rewriting rule associated to x_i and r_i, defined on the generators as
\Omega_i(x_j) := \begin{cases}
\omega(x_j, r_j) & \text{if }j =i \\
x_j & \text{if }j \neq i \end{cases}
for all 1\leq j \leq m.
For every
\bullet~~~ Given \alpha \leq \alpha', the homomorphism
\widetilde g_{\alpha, \alpha'}\colon F\left(X(\mathcal Q_{i(\alpha)})\cap K_\alpha\right)
\to F\left(X(\mathcal Q_{i(\alpha')})\cap K_{\alpha'}\right)
defined by
\widetilde g_{\alpha, \alpha'}(x) := \Omega_{i(\alpha')}\circ \dots \circ \Omega_{i(\alpha)+1}\circ \Omega_{i(\alpha)}(x)
for all x\in X(\mathcal Q_{i(\alpha)})\cap K_\alpha
induces a homomorphism g_{\alpha, \alpha'}\colon \pi_1((K_\alpha)_{\mathcal M}) \to \pi_1((K_{\alpha'})_{\mathcal M}) .
Moreover, the following diagram commutes
~~~~~~~~~~\pi_1(K_{\alpha}) \xrightarrow{f_{\alpha, \alpha'}} \pi_1(K_{\alpha'})
~~~~~~~~~\varphi_{\alpha}\downarrow ~~~~~\circlearrowleft~~~~~\downarrow \varphi_{\alpha'}
~~~~~~~~~~\pi_1((K_{\alpha})_\mathcal{M})\xrightarrow{g_{\alpha, \alpha'}} \pi_1((K_{\alpha'})_\mathcal{M})
where \varphi_{\alpha}:\mathcal P_{K_\alpha} \to \mathcal P_{(K_\alpha)_{\mathcal M}} is the isomorphism defined as \varphi_{\alpha}(x) := \Omega_m\circ \dots \circ \Omega_2\circ \Omega_1(x) on the set of generators x\in X(K_\alpha), for all \alpha \in \mathbb{R}.
S^2\vee S^1\vee S^1 vs S^1\times S^1
S^2\vee S^1\vee S^1 vs S^1\times S^1
Persistent fundamental group
S^2\vee S^1\vee S^1 vs S^1\times S^1
Persistent fundamental group
Persistent homology