XIMENA FERNANDEZ
Durham University
UK CENTRE FOR TOPOLOGICAL DATA ANALYSIS
Applied Topology Seminar - CIMAT
'Every mathematician has a secret weapon.
Mine is Morse theory.'
Raoul Bott.
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
For every cell en in K, #{en≻en−1:f(en)≤f(en−1)}≤1 and #{en≺en+1:f(en)≥f(en+1)}≤1.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
An n-cell en∈K is a critical cell of index n if the values of f in every face and coface of en increase with dimension.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Theorem [Forman, '98]. K is homotopy equivalent to a CW-complex KM with exactly one cell of dimension k for every critical cell of index k.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪˜en where the attaching map ˜φ:∂Dn→L of ˜en is defined as ˜φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Proposition [F. 2017]: Let K∪d⋃i=1ei be a CW-complex where
dim(K)≤dim(ei)≤dim(ei+1)≤n for all i=1,2,…,d.
Let φj:∂Dj→K∪⋃i<jei be the attaching map of ej.
If K↘L, then there exist CW-complexes Z1≤Z2≤⋯≤Zd of dim ≤n+1 such that for every j=1,2,…,d,
K∪j⋃i=1ei↗Zj↘L∪j⋃i=1˜ei where the attaching map
˜φj:∂Dj→L∪⋃i<j˜ei of the cell ˜ej is defined inductively as:
∙ ˜φ1=r0φ1 with r0:K→L the canonical strong deformation retract and for j>1,
∙ ˜φj=˜rj−1ıj−1φj where ˜rj−1:Zj−1→L∪⋃i<j˜ei is the strong deformation retract and ıj−1:K∪⋃i<jei→Zj−1 is the inclusion.
Theorem [F. 2017]: Let K be a regular CW-complex of dim n and let f:K→R be discrete Morse function. Then, f induces a sequence of internal collapses given by a filtration of K ∅=K−1⊆L0⊆K0⊆L1⊆K1⋯⊆LN⊆KN=K such that Kj↘Lj for all 1≤j≤N and Lj=Kj−1∪dj⋃i=1eji with {eji:0≤j≤N,1≤i≤dj} the set of critical cells of f. Moreover, K↗↘n+1L0∪N⋃j=1dj⋃i=1˜eji=KM.
* Here, the attaching maps of the cells ˜eji can be explicitly reconstructed from the internal collapses.
KP
P=⟨x,y | xyx−1y−1⟩
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16, x−110x9x4,x−19x8,x−18x7x6,x−17⟩
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16, x−110x9x4,x−19x8,x−18x7x6,x−17⟩
K+f:K→R Morse function
PKM=⟨x4,x6 | x6x4x−16x−14⟩
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
O(M2) with M = |2-cells of K|
ximenafernandez/Finite-Topological-Spaces (SAGE)
Posets-Package (GAP) (joint with K. Piterman & I. Sadofschi Costa).
(c.f. Brendel, Ellis, Juda, Mrozek. Fundamental group algorithm for low dimensional tessellated CW-complexes, 2015. arXiv:1507.03396)
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω0(x13,x−113x12x−14)=x12x−14
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω0(x13,x−113x12x−14)=x12x−14
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 | x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
ω1(x12,x−112x12)=x11
Q2=⟨x4,x6,x7,x8,x9,x10,x11 | x11x−14,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 | x13,x−113x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 | x12x−14,x−112x11,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 | x11x−14,x−111x10x−16,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q3=⟨x4,x6,x7,x8,x9,x10 | x10x−16x−14,x−110x9x4,x−19x8,x−18x7x6,x−17⟩
Q4=⟨x4,x6,x7,x8,x9 | x9x4x−16x−14,x−19x8,x−18x7x6,x−17⟩
Q5=⟨x4,x6,x7,x8 | x8x4x−16x−14,x−18x7x6,x−17⟩
Q6=⟨x4,x6,x7 | x7x6x4x−16x−14,x−17⟩
Q7=⟨x4,x6 | x6x4x−16x−14⟩
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
Conjecture [Andrews & Curtis, 1965]. Any finite balanced presentation P=⟨x1,…,xn | r1,…,rn⟩ of the trivial group can be transformed into the empty presentation ⟨ | ⟩ by a finite sequence of the following operations:
Theorem [Tietze, 1908]. Any finite presentation P=⟨x1,…,xn | r1,…,rm⟩ of a group G can be transformed into any other presentation of the same group by a finite sequence of the following operations:
Potential counterexamples.
Theorem [Bridson, 2015] There exist balanced presentations of the trivial group that satisfy the AC-conjecture for which the minimun length of any simplification sequence is superexponential in the total length of the relators.
Remark [Referee]. AC-transformations of group presentations are in correspondence with 3-deformations of 2-complexes.
Corollary [F. 2017]. Let P be a finite presentation of a finitely presented group. Let K′P be the barycentric subdivision of the standard complex KP and let f:K′P→R be a discrete Morse function.
Then P∼ACP(K′P)M.
Theorem [F. 2017-2021]. The following balanced presentations of the trivial group satisfies the Andrews-Curtis conjecture:
∙ P=⟨x,y | xyx=yxy, x2=y3⟩* [Akbulut & Kirby, 1985]
∙ P=⟨x,y | x−1y3x=y4, x=y−1xyx−1⟩ [Miller & Schupp, 1999]
∙ P=⟨x,y | x=[x−1,y−1],y=[y−1,xq]⟩,∀q∈N [Gordon, 1984]
* First proved by Miasnikov in 2003 using genetic algorithms.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
~O(M^2) with M = |2-cells of K_N|
~O(M^2) with M = |2-cells of K_N|
S^2\vee S^1\vee S^1 vs S^1\times S^1
S^2\vee S^1\vee S^1 vs S^1\times S^1
S^2\vee S^1\vee S^1 vs S^1\times S^1
Vietoris–Rips filtration
Persistent homology
S^2\vee S^1\vee S^1 vs S^1\times S^1
Persistent fundamental group
S^2\vee S^1\vee S^1 vs S^1\times S^1
Persistent fundamental group
Persistent homology
github.com/ximenafernandez ~~~~ ximenafernandez.github.io/ ~~~~ ximena.l.fernandez@durham.ac.uk ~~~~ @pi_ene
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle~~~~~~P_{(K_2)_\mathcal M} =\langle x_4, x_6, x_7~ | ~ x_7x_6 x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle
~~~~~~~~~P_{(K_1)_\mathcal M} = \langle x_4, x_6, x_{10}, x_{11}, x_{12}~ | ~ \rangle~~~~~~P_{(K_2)_\mathcal M} =\langle x_4, x_6, x_7~ | ~ x_7x_6 x_4x_6^{-1}x_4^{-1}\rangle ~~~~~~ P_{(K_3)_\mathcal M} = \langle x_4, x_6~ | ~ x_6 x_4x_6^{-1}x_4^{-1}\rangle
\mathcal{Q}_0 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | ~ x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_1 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12} ~ | ~ x_{12}x_4^{-1}, x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_2 = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11} ~ | ~ x_{11}x_4^{-1}, x_{11}^{-1}x_{10}x_6^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_3 = \langle x_4, x_6, x_7, x_8, x_9, x_{10} ~ | ~ x_{10}x_6^{-1}x_4^{-1}, x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_4 = \langle x_4, x_6, x_7, x_8, x_9 ~ | ~ x_{9}x_4x_6^{-1}x_4^{-1}, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_5 = \langle x_4, x_6, x_7, x_8~ | ~ x_{8}x_4x_6^{-1}x_4^{-1}, x_8^{-1}x_7x_6, x_7^{-1}\rangle
\mathcal{Q}_6 = \langle x_4, x_6, x_7~ | ~ x_7x_6x_4x_6^{-1}x_4^{-1}, x_7^{-1}\rangle
\mathcal{Q}_7 = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle