XIMENA FERNANDEZ
University of Oxford
UK CENTRE FOR TOPOLOGICAL DATA ANALYSIS
Coloquio Iberoamericano de Álgebra y Teoría de Nudos
'Every mathematician has a secret weapon.
Mine is Morse theory.'
Raoul Bott.
KP
P=⟨x,y ∣ xyx−1y−1⟩
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1, x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Let K,L be CW-complexes.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
For every cell en in K, #{en≻en−1:f(en)≤f(en−1)}≤1 and #{en≺en+1:f(en)≥f(en+1)}≤1.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
An n-cell en∈K is a critical cell of index n if the values of f in every face and coface of en increase with dimension.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Theorem [Forman, '98]. K is homotopy equivalent to a CW-complex KM with exactly one cell of dimension k for every critical cell of index k.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Lemma (Internal collapse): Let K be a CW-complex of dimension ≤n. Let φ:∂Dn→K be the attaching map of an n-cell en. If K↘L, then K∪en↗↘n+1L∪en where the attaching map φ:∂Dn→L of en is defined as φ=rφ with r:K→L the canonical strong deformation retract induced by the collapse K↘L.
Proposition [F.]: Let K∪i=1⋃dei be a CW-complex where
dim(K)≤dim(ei)≤dim(ei+1)≤n for all i=1,2,…,d.
Let φj:∂Dj→K∪i<j⋃ei be the attaching map of ej.
If K↘L, then there exist CW-complexes Z1≤Z2≤⋯≤Zd of dim ≤n+1 such that for every j=1,2,…,d,
K∪i=1⋃jei↗Zj↘L∪i=1⋃jei where the attaching map
φj:∂Dj→L∪i<j⋃ei of the cell ej is defined inductively as:
∙ φ1=r0φ1 with r0:K→L the canonical strong deformation retract and for j>1,
∙ φj=rj−1j−1φj where rj−1:Zj−1→L∪⋃i<jei is the strong deformation retract and j−1:K∪⋃i<jei→Zj−1 is the inclusion.
Theorem [F.]: Let K be a regular CW-complex of dim n and let f:K→R be discrete Morse function. Then, f induces a sequence of internal collapses given by a filtration of K ∅=K−1⊆L0⊆K0⊆L1⊆K1⋯⊆LN⊆KN=K such that Kj↘Lj for all 1≤j≤N and Lj=Kj−1∪i=1⋃djeij with {eij:0≤j≤N,1≤i≤dj} the set of critical cells of f. Moreover, K↗↘n+1L0∪j=1⋃Ni=1⋃djeij=KM.
* Here, the attaching maps of the cells eij can be explicitly reconstructed from the internal collapses.
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1, x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
K
PK=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1, x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
K+f:K→R Morse function
PKM=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
O(M2) with M = |2-cells of K|
ximenafernandez/Finite-Topological-Spaces (SAGE)
Posets-Package (GAP) (joint with K. Piterman & I. Sadofschi Costa).
(c.f. Brendel, Ellis, Juda, Mrozek. Fundamental group algorithm for low dimensional tessellated CW-complexes, 2015. arXiv:1507.03396)
Given K a regular CW-complex of dim 2 and f:K→R a discrete Morse function with a single critical 0-cell, we developed an algorithm to compute the Morse presentation PKM.
Conjecture [Andrews & Curtis, 1965]. Any finite balanced presentation P=⟨x1,…,xn ∣ r1,…,rn⟩ of the trivial group can be transformed into the empty presentation ⟨ ∣ ⟩ by a finite sequence of the following operations:
Theorem [Tietze, 1908]. Any finite presentation P=⟨x1,…,xn ∣ r1,…,rm⟩ of a group G can be transformed into any other presentation of the same group by a finite sequence of the following operations:
Potential counterexamples.
Theorem [Bridson, 2015] There exist balanced presentations of the trivial group that satisfy the AC-conjecture for which the minimun length of any simplification sequence is superexponential in the total length of the relators.
Remark [Referee]. AC-transformations of group presentations are in correspondence with 3-deformations of 2-complexes.
Corollary [F. 2017]. Let P be a finite presentation of a finitely presented group. Let KP′ be the barycentric subdivision of the standard complex KP and let f:KP′→R be a discrete Morse function.
Then P∼ACP(KP′)M.
Theorem [F. 2017-2021]. The following balanced presentations of the trivial group satisfies the Andrews-Curtis conjecture:
∙ P=⟨x,y ∣ xyx=yxy, x2=y3⟩* [Akbulut & Kirby, 1985]
∙ P=⟨x,y ∣ x−1y3x=y4, x=y−1xyx−1⟩ [Miller & Schupp, 1999]
∙ P=⟨x,y ∣ x=[x−1,y−1],y=[y−1,xq]⟩,∀q∈N [Gordon, 1984]
* First proved by Miasnikov in 2003 using genetic algorithms.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
Let Xn be a (possible noisy) finite sample of an unknown topological space X.
Goal: Describe (algorithmic) tools to infer topological properties of X from Xn.
O(M2) with M = |2-cells of KN|
O(M2) with M = |2-cells of KN|
S2∨S1∨S1 vs S1×S1
S2∨S1∨S1 vs S1×S1
S2∨S1∨S1 vs S1×S1
Vietoris–Rips filtration
Persistent homology
S2∨S1∨S1 vs S1×S1
Persistent fundamental group
S2∨S1∨S1 vs S1×S1
Persistent fundamental group
Persistent homology
github.com/ximenafernandez ximenafernandez.github.io/ ximena.l.fernandez@durham.ac.uk @pi_ene
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
P(K1)M=⟨x4,x6,x10,x11,x12 ∣ ⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
P(K1)M=⟨x4,x6,x10,x11,x12 ∣ ⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
P(K1)M=⟨x4,x6,x10,x11,x12 ∣ ⟩ P(K2)M=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
P(K1)M=⟨x4,x6,x10,x11,x12 ∣ ⟩ P(K2)M=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1⟩ P(K3)M=⟨x4,x6 ∣ x6x4x6−1x4−1⟩
Q0=⟨x4,x6,x7,x8,x9,x10,x11,x12,x13 ∣ x13,x13−1x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q1=⟨x4,x6,x7,x8,x9,x10,x11,x12 ∣ x12x4−1,x12−1x11,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q2=⟨x4,x6,x7,x8,x9,x10,x11 ∣ x11x4−1,x11−1x10x6−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q3=⟨x4,x6,x7,x8,x9,x10 ∣ x10x6−1x4−1,x10−1x9x4,x9−1x8,x8−1x7x6,x7−1⟩
Q4=⟨x4,x6,x7,x8,x9 ∣ x9x4x6−1x4−1,x9−1x8,x8−1x7x6,x7−1⟩
Q5=⟨x4,x6,x7,x8 ∣ x8x4x6−1x4−1,x8−1x7x6,x7−1⟩
Q6=⟨x4,x6,x7 ∣ x7x6x4x6−1x4−1,x7−1⟩
Q7=⟨x4,x6 ∣ x6x4x6−1x4−1⟩