XIMENA FERNANDEZ
City St George's University of London
Conference on Algebraic Topology - Santiago de Compostela
24 April 2025
'Every mathematician has a secret weapon.
Mine is Morse theory.'
Raoul Bott.
Let $K$ be a finite CW-complex.
Q: Is there any algorithm to "determine" its homotopy type?
A: NO
Let $K$ be a finite CW-complex.
Q: Is there any algorithm to find a complex $L$ such that $K \simeq L$,
with $L$ "simpler"?
A: YES.
Collapses & Discrete Morse Theory
Strong Collapses & Strong Discrete Morse Theory
J.H.C. Whitehead ~1950
Let $K,L$ be CW-complexes.
Let $K,L$ be CW-complexes.
Let $K,L$ be CW-complexes.
Let $K,L$ be CW-complexes.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
For every cell $e^n$ in $K$,
$\#\{e^n\succ e^{n-1}: f(e^n)\leq f(e^{n-1})\}\leq 1$ and
$\#\{e^n\prec e^{n+1} : f(e^n)\geq f(e^{n+1})\}\leq 1.$
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
An $n$-cell $e^n \in K$ is a critical cell of index $n$ if the values of $f$ in every face and coface of $e^n$ increase with dimension.
Goal: 'Simplify' the cell decomposition of a CW-complex while preserving its homotopy type.
Theorem [Forman, '98]. $K$ is homotopy equivalent to a CW-complex $\mathrm{core}_f(K)$ with exactly one cell of dimension $k$ for every critical cell of index $k$.
Lemma [Forman, '98]. Let $f\colon K\to \mathbb{R}$ be a discrete Morse function.
A. If $f^{-1}(\alpha, \beta]$ contains no critical cells, then $K(\beta) \searrow K(\alpha)$.
B. If $f^{-1}(\alpha, \beta]$ contains exactly one critical $k$-cell, then $K(\beta) \simeq K(\alpha) \cup e^k$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Lemma (Internal collapse): Let $K$ be a CW-complex of dimension $\leq n$. Let $\varphi:\partial D^n\to K$ be the attaching map of an $n$-cell $e^n$. If $K \searrow L$, then \[K\cup e^n \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}L\cup \widetilde{e}^n\] where the attaching map $\widetilde{\varphi}\colon \partial D^ n\to L$ of $\widetilde{e}^n$ is defined as $\widetilde{\varphi}=r \varphi$ with $r:K\to L$ the canonical strong deformation retract induced by the collapse $K \searrow L$.
Theorem [F. 2024]: Let $K$ be a regular CW-complex of dim $n$ and let $f:K\to \mathbb{R}$ be discrete Morse function.
Then, $f$ induces a sequence of internal collapses given by a filtration of $K$
\[ \varnothing = K_{-1} \subseteq L_0 \subseteq K_0\subseteq L_1\subseteq K_1 \dots \subseteq L_{N}\subseteq K_{N}=K\]
such that:
$K_j\searrow L_{j}$ for all $1\leq j\leq N$ and
$\displaystyle L_{j}=K_{j-1}\cup \bigcup_{i=1}^{d_j}
e_i^j$ with $\{e_i^j:0\leq j\leq N, 1\leq i \leq d_j\}$ the set of critical cells of $f$.
Moreover,
$ K \nearrow\hspace{-1.5 pt} \searrow^{^{\hspace{-8pt} n+1}}
L_0\cup \bigcup_{j=1}^{N} \bigcup_{i=1}^{d_j}\widetilde e_i^j = \mathrm{core}_f(K)$ the internal core of $K$.
* Here, the attaching maps of the cells $\widetilde e_i^j$ can be explicitly reconstructed from the internal collapses.
Conjecture [Andrews & Curtis, 1965].
Any finite balanced presentation $\mathcal{P}=\langle x_1,\dots,x_n ~|~ r_1,\dots,r_n\rangle $ of the trivial group
can be transformed into the empty presentation $\langle ~|~\rangle$ by a
finite sequence of the following operations:
Theorem [Tietze, 1908].
Any finite presentation $\mathcal{P}=\langle x_1,\dots,x_n ~|~ r_1,\dots,r_m\rangle $ of a group $G$
can be transformed into any other presentation of the same group by a
finite sequence of the following operations:
Potential counterexamples.
Theorem [Bridson, 2015] There exist balanced presentations of the trivial group that satisfy the AC-conjecture for which the minimun length of any simplification sequence is superexponential in the total length of the relators.
Remark [Anonymous Referee]. AC-transformations of group presentations are in correspondence with 3-deformations of 2-complexes.
Conjecture [Andrews & Curtis, 1965].
For any contractible CW-complex of dimension 2, it 3-deforms to a point.
$K_{\mathcal{P}}$
$\longleftarrow$
$\mathcal{P}= \langle x,y ~|~xyx^{-1}y^{-1}\rangle $
$K$
$\longrightarrow$
$\mathcal{P}_K = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | \\~x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, \\ x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle $
$K$
$\mathcal{P}_K = \langle x_4, x_6, x_7, x_8, x_9, x_{10}, x_{11}, x_{12}, x_{13}~ | \\~ ~ ~ ~ ~ ~ ~ ~ ~ ~x_{13}, x_{13}^{-1}x_{12}x_4^{-1},x_{12}^{-1}x_{11}, x_{11}^{-1}x_{10}x_6^{-1}, \\ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~x_{10}^{-1}x_9x_4, x_9^{-1}x_8, x_8^{-1}x_7x_6, x_7^{-1}\rangle $
$K + f\colon K\to \mathbb{R}$ Morse function
$\mathcal{P}_{\mathrm{core}_f(K)} = \langle x_4, x_6~ | ~ x_6x_4x_6^{-1}x_4^{-1}\rangle $
Theorem [F.]: Given $K$ a regular CW-complex of dim 2 and $f\colon K\to \mathbb{R}$ a discrete Morse function with a single critical 0-cell, there exist an algorithm to compute the attaching maps of $\mathrm{core}_f(K)$.
$O(M^2)$ with $M$ = |2-cells of $K$|.
ximenafernandez/Finite-Topological-Spaces (SAGE)
Posets-Package (GAP) (joint with K. Piterman & I. Sadofschi Costa).
Corollary [F.]: Given $\mathcal{P}$ a group presentation, and a discrete Morse function on $K'_\mathcal{P}$, there exist an algorithm to compute $\tilde{\mathcal{P}} = \mathcal{P}_{\mathrm{core}_f(K'_\mathcal{P})}$. In particular, $\mathcal P\sim_{AC}\mathcal{\tilde{P}}$.
$O(R^2)$ with $R$ the total length relator of $\mathcal P$.
(c.f. Brendel, Ellis, Juda, Mrozek. Fundamental group algorithm for low dimensional tessellated CW-complexes, 2015. arXiv:1507.03396)
Theorem [F.]. The following balanced presentations of the trivial group satisfies the Andrews-Curtis conjecture:
$\bullet ~~\mathcal{P}=\langle x, y~|~ xyx = yxy,~ x^2 = y^{3}\rangle$* [Akbulut & Kirby, 1985]
$\bullet ~~\mathcal{P}= \langle x,y~|~x^{-1}y^3 x = y^{4}, ~x = y^{-1}xyx^{-1}\rangle$ [Miller & Schupp, 1999]
$\bullet ~~\mathcal{P}=\langle x,y~| ~x=[x^{-1},y^{-1}], y=[y^{-1},x^q]\rangle, \forall q \in \mathbb{N}$ [Gordon, 1984]
* First proved by Miasnikov in 2003 using genetic algorithms.
Rmk: If $K\searrow L$, then there exists $f\colon K\to \mathbb{R}$ discrete Morse function s.t. $L = \mathrm{core}_f(K)$.
Goal: Understand the attaching maps of $\mathrm{core}_f(K)$.
Rmk: If $K\searrow L$, then there exists $f\colon K\to \mathbb{R}$ discrete Morse function s.t. $L = \mathrm{core}_f(K)$.
Goal: Understand the attaching maps of $\sout{\mathrm{core}_f(K)}$.
Goal: Understand when the attaching maps of $\mathrm{core}_f(K)$ are understandable.
Let $K, L$ be a simplicial complexes.
Let $K, L$ be a simplicial complexes.
Remark: $K \searrow\hspace{-6 pt}\searrow L$ implies $K \searrow L$ BUT the converse is not true.
Let $K$ be a simplicial complex.
Let $g\colon V(K)\to \mathbb{R}$ be a real-valued function.
Define $K_\alpha = \{\sigma\in K\colon f(v)\leq \alpha ~ \forall v\in V(\sigma)\}$ sublevel complex.
Let $K$ be a simplicial complex.
Let $g\colon V(K)\to \mathbb{R}$ be a real-valued function.
Define $K_\alpha = \{\sigma\in K\colon f(v)\leq \alpha ~ \forall v\in V(\sigma)\}$ sublevel complex.
Theorem [F. 2025]. $K$ is homotopy equivalent to a CW-complex $\mathrm{core}_g(K)$ with exactly one cell of dimension $k$ for every $k$-simplex in $\mathrm{st}(v,K_{f(v)})$ with $v$ strong critical vertex.
Moreover, $\mathrm{core}_g(K)$ is regular.
Lemma [F., 2025]. Let $f\colon V(K)\to \mathbb{R}$ be a real-valued function.
A. If $f^{-1}(\alpha, \beta]$ has no strong critical vertices, then $K_\beta \searrow\hspace{-6 pt}\searrow K_\alpha$.
B. If $f^{-1}(\alpha, \beta]$ has exactly one strong critical vertex $v$, then $K_\beta \simeq K_\alpha \cup \bigcup e_k$ with $e_k$ in corrspondence with simplices in $\mathrm{st}(v,K_{f(v)})$.
Lemma [F., 2025]. Let $f\colon V(K)\to \mathbb{R}$ be a real-valued function.
A. If $f^{-1}(\alpha, \beta]$ has no strong critical vertices, then $K(\beta) \searrow\hspace{-6 pt}\searrow K(\alpha)$.
B. If $f^{-1}(\alpha, \beta]$ has exactly one strong critical vertex $v$, then $K(\beta) \simeq K_\alpha \cup \bigcup e_k$ with $e_k$ in corrspondence with simplices in $\mathrm{st}(v,K_{f(v)})$.
Proposition [F., 2025]. Let $K$ be a finite simplicial complex.
Given $g\colon V(K)\to \mathbb{R}$ map, the face poset of $\mathrm{core}_g(K)$ determines it.
Rmk: The face poset of $\mathrm{core}_g(K)$ is the poset of incidence of the critical simplices.
Given $g\colon V(K)\to \mathbb{R}$ map, the face poset of $\mathrm{core}_g(K)$ determines it.
Rmk: The face poset of $\mathrm{core}_g(K)$ is the poset of incidence of the critical simplices.
Library of triangulations by Benedetti & Lutz